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1 Introduction

The path integral formalism is an alternative description of quantum mechanics that
is equivalent to the standard formulations which exhibits an intuitive point of view
on many quantum processes. Its first complete formalisation was done by Feynman
in his doctoral thesis [Feynman and Brown, 1942]. It is based on the idea that all
possible paths a system can take account for the development of its quantum state
– with the contribution of each path determined by its action. We give a deduction
of the path integral in section 2, together with some simplifications that are possible
after certain general assumptions on the system’s Hamiltonian.

In classical mechanics, the equations of motion of a particle or system can be derived
by finding a path in its configuration space which produces minimal action. For the
quantum mechanical path integrals, though, the action becomes a complex number,
demanding the search for saddle points instead of minima. We motivate the reduction
of the problem to working only at the saddle point paths rather than the whole path
space by giving a short introduction to the saddle point method in the case of functions
with real exponents in section 3.

In certain cases, the problems arising with this complexification can be resolved by
switching back and forth from real to imaginary time, where the calculation resembles
a classical action minimization. This Wick rotation, which we discuss in section 4, was
first introduced in [Wick, 1954] and is a useful tool for the evaluation of path integrals.
However, there is little insight on the physical interpretation of this mathematical
trick.

This work tries to fathom how those time rotations are justified or even necessitated
by the laws of physics, with the example of a particle in a double well potential
V (x ) = κ(x + a)2(x − a)2. We regard the case of a single tunneling process in the
infinite time limit. Here, the methods that suggest themselves for finding a minimal
action path that connects both wells are unsuccessful when they are applied in real
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1 Introduction

time. Indeed we see in section 5 that performing a Wick rotation and using these
methods afterwards leads to a reasonable set of connecting paths.

Following the result of Cherman and Ünsal given in [Cherman and Ünsal, 2014], in
section 7 we expound that it is not necessary to completely turn the time axis from
purely real to purely imaginary in the case of the double well potential. In fact, it
proves sufficient for the rotation of the time axis in the complex plane to be arbitrarily
small. However, with the rotation angle approaching zero, the resulting solution
paths blow up to divergingly large and spiry curves. This divergence, discussed in
section 8, elucidates why the limit of null rotation can not be used.

Our idea is that the rotation emerges from fluctuations of the rest energy. In section 9,
we examine how a slight complex phase of the non-zero ground state energy results in
solutions that are similar to those obtained by a small rotation of the time axis. We can
only make the claim plausible that complex energies give the same results as complex
times by numerical comparisons; a rigorous proof of this proposition might need
techniques that exceed the framework of this thesis. Then, the conceptual question
would be shifted from the interpretation of imaginary times towards that of small
energies with exiguous imaginary parts. The incidence of a non-zero energy is forced
by basic quantum mechanical principles like Heisenberg’s uncertainty principle, while
the issue of explaining a complex phase of the energy is left open.

I would like to thank Jörg Schmalian for proposing the topic and supervising this
bachelor thesis, Pia Gagel for her great assistance and guidance throughout this work,
Tim Ludwig for bringing in many crucial ideas during our discussions, and my friends
and family, especially those who did some proofreading, for their amiable support.

Logic will get you from A to Z;

imagination will get you

everywhere.

attributed to Albert Einstein
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2 The Path Integral Formalism

In this first section we construct the path integral which equals the transition proba-
bility between two quantum states. This formalism was introduced by Feynman in
1965 in [Feynman and Hibbs, 1965]. A general derivation is given in [Kleinert, 1995]
and [Altland and Simons, 2010].

By the laws of quantum mechanics, the probability for a point particle that is in state
xL at time ta to be found in state xR at a later time tb is

(xR.tb | xL.ta) = 〈xR| Û (tb , ta) |xL〉 (1)

with the time evolution operator Û (tb , ta) that is determined by the Hamiltonian of
the system. We divide the time interval between ta and tb into a large number N of
smaller intervals by introducing time steps tn with

tn − tn−1 =
tb − ta
N

=: ε, t0 = ta , tN = tb . (2)

We split up the time evolution operator accordingly, and equation 1 becomes

(xR.tb | xL.ta) = 〈xR| Û (tb , tN−1) · · · Û (tn+1, tn) · Û (tn , tn−1) · · · Û (t1, ta) |xL〉 . (3)

Now between each two steps we insert the identity operator

1 =

+∞∫
−∞

dxn |xn〉 〈xn | (4)
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2 The Path Integral Formalism

and receive

(xR.tb | xL.ta) = 〈xR| Û (tb , tN−1)

+∞∫
−∞

dxN−1 |xN−1〉 〈xN−1| Û (tN−1, tN−2) · · · |xL〉

= (
N−1∏
n=1

+∞∫
−∞

dxn) 〈xR| Û (tb , tN−1) |xN−1〉 〈xN−1| Û (tN−1, tN−2) · · · |xL〉

= (
N−1∏
n=1

+∞∫
−∞

dxn)
N∏
n=1

(xn .tn | xn−1.tn−1).

(5)

We can write the small transition steps as

(xn .tn | xn−1.tn−1) = 〈xn | Û (tn , tn−1) |xn−1〉 = 〈xn | e
−i
~ εĤ |xn−1〉 (6)

where we assume that the system’s Hamiltonian is time-independent. Another as-
sumption about the Hamiltonian we are using is that we can write it as

Ĥ (p, x , t) = T̂ (p) + V̂ (x ), (7)

i.e. that it and consists of separated, time-independent kinetic and potential parts,
depending solely on p respectively x . With this, the commutator [εT̂ , εV̂ ] is of order ε2

and thus can be neglected for small ε . Using the Baker–Campbell–Hausdorff formula
this yields:

Û (tn , tn−1) = e
−i
~ εĤ = e

−i
~ ε(T̂+V̂ )

= e
−i
~ εT̂e

−i
~ εV̂ (1 + O(ε2)) ≈ e

−i
~ εT̂e

−i
~ εV̂ .

(8)
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Again inserting 1 =
+∞∫
−∞

dx |x 〉 〈x |, the single steps read

(xn .tn | xn−1.tn−1) = 〈xn | e
−i
~ εT̂e

−i
~ εV̂ |xn−1〉 =

+∞∫
−∞

dx 〈xn | e
−i
~ εT̂ |x 〉 〈x | e

−iεV̂
~ |xn−1〉 . (9)

As assumed, the potential energy V (x ) only depends on the position x , which means
that the position eigenkets |x 〉 are eigenkets of V̂ :

V̂ |x 〉 = V (x ) |x 〉 (10)

〈x | e
−i
~ εV̂ |xn−1〉 = e

−i
~ εV (xn−1)δ(x , xn−1) (11)

Thus equation 9 becomes

(xn .tn | xn−1.tn−1) = e
−i
~ εV (xn−1)

〈xn | e
−i
~ εT̂ (p̂)

|xn−1〉 , (12)

and as we want to evaluate the operator T̂ which is described in the momentum basis,
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2 The Path Integral Formalism

we insert 1 =
+∞∫
−∞

dp |p〉 〈p| and get

(xn .tn | xn−1.tn−1) = e
−i
~ εV (xn−1)

〈xn | e
−i
~ εT̂ (p̂)

+∞∫
−∞

dp |p〉 〈p | xn−1〉

=

+∞∫
−∞

dp e
−i
~ εV (xn−1)

〈xn | e
−i
~ εT̂ (p̂)

|p〉
1
√

2π~
e

i
~pxn−1

=

+∞∫
−∞

dp e
−i
~ εV (xn−1)e

−i
~ εT (p)

〈xn | p〉
1
√

2π~
e
−i
~ pxn−1

=

+∞∫
−∞

dp e
−i
~ εV (xn−1)e

−i
~ εT (p) 1

√
2π~

e
i
~pxn

1
√

2π~
e
−i
~ pxn−1

=

+∞∫
−∞

dp

2π~
e
−i
~ (εV (xn−1)+εT (p)−p(xn−xn−1)).

(13)

Now we can use that for very small ε = tn − tn−1 the definition of the time derivative
states that

xn − xn−1 = ε
xn − xn−1

tn − tn−1
= εẋn (14)

and hence we have

(xn .tn | xn−1.tn−1) =

+∞∫
−∞

dp

2π~
e
−i
~ ε(V (xn−1)+T (p)−pẋn ) =

+∞∫
−∞

dp

2π~
e

i
~ ε(pẋn−H (xn−1,p)). (15)
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Inserting this into equation 5 gives us

(xR.tb | xL.ta) =


N−1∏
n=1

+∞∫
−∞

dxn


N∏
n=1


+∞∫
−∞

dpn
2π~

e
i
~ ε(pn ẋn−H (xn−1,pn ))


=


N−1∏
n=1

+∞∫
−∞

dxn




N∏
n=1

+∞∫
−∞

dpn
2π~

 e
∑N

n=1
i
~ ε(pn ẋn−H (xn−1,pn )).

(16)

Using the dependency of xn−1, ẋn and pn of the counting parameter n in

N∑
n=1

i

~
ε (pn ẋn − H (xn−1, pn)) (17)

we make functions of the time tn = ta + nε:

N∑
n=1

i

~
ε (p(tn)ẋ (tn) − H (x (tn), p(tn))) . (18)

The sum 18 is a Riemann sum, and therefore, for small ε it converges to the integral

tb∫
ta

i

~
dt (pẋ − H (x , p)) . (19)

Also, for this point of view of x , ẋ and p depending on t , the functions x (t) and p(t)
themselves are becoming the integration variables in 16; for the limit N → ∞, we
write 

N−1∏
n=1

+∞∫
−∞

dxn




N∏
n=1

+∞∫
−∞

dpn
2π~

 =:
∫ ∫

DxDp

2π~
. (20)

This means we integrate over all smooth functions x (t) with x (ta) = xL and x (tb) = xR
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2 The Path Integral Formalism

and smooth functions p(t) with p(ta) = 0.

Putting this together, equation 16 becomes

(xR.tb | xL.ta) =

∫ ∫
DxDp

2π~
e

i
~

tb∫
ta

dt(pẋ−H (x ,p))
. (21)

That is the path integral formulation of the transition probability.

Simplification of this expression can be attained if we assume that the kinetic energy
is of the form of that of a point particle,

T (p) =
p2

2m
. (22)

We go back to the notation as in 15 by replacing the path integral notation by what it
precisely stands for and thus have

(xR.tb | xL.ta) =

∫ ∫
DxDp

2π~
e

i
~

tb∫
ta

dt(pẋ−H (x ,p))

=


N−1∏
n=1

+∞∫
−∞

dxn


N∏
n=1


+∞∫
−∞

dpn
2π~

e
i
~ ε

(
pn ẋn−

p2
n

2m

)
e−

i
~ εV (xn−1)


=


N−1∏
n=1

+∞∫
−∞

dxn


N∏
n=1


+∞∫
−∞

dpn
2π~

e

−
i

2m~ ε

(
p2
n−2mpn ẋn+(mẋn )2

−(mẋn )2︸       ︷︷       ︸
=0

)
e−

i
~ εV (xn−1)


=


N−1∏
n=1

+∞∫
−∞

dxne
−

i
~ εV (xn−1)e

i
2m~ ε(mẋn )2


N∏
n=1


+∞∫
−∞

dpn
2π~

e−
i

2m~ ε(pn−mẋn )2

 = . . .

(23)
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Two steps of using Gaussian integrals simplify this to

. . . =


N−1∏
n=1

+∞∫
−∞

dxne
i
~ ε

(
m
2 ẋ 2

n−V (xn−1)
)

N∏
n=1

1
2π~

√
π
i

2m~ε

=

N−1∏
n=1

+∞∫
−∞

dxn

√
m

2πi~ε
e

i
~ ε

(
m
2 ẋ 2

n−V (xn−1)
)

=

∫
Dx e

i
~

tb∫
ta

dt(m
2 ẋ 2
−V (x ))

.

(24)

In the last step, we used the refined path integral notation

N−1∏
n=1

+∞∫
−∞

dxn

√
m

2πi~ε
=:

∫
Dx for N →∞. (25)

Note that while the path integral operation
∫
Dx is still dimensionless, it has an

implicit dependence on the mass m that stems from the mass dependency of the
momentum which we just got rid of.

This form of the path integral doesn’t include the integral over all possible paths in
the momentum space any more and therefore is way easier to handle. It also doesn’t
incorporate boundary conditions for the momentum, but those can be processed
physically correctly by applying them on ẋ =̂ p

m
.

Now the problem is that we do not really have an overview on how the phase

i
~

tb∫
ta

dt (pẋ − H (x , p)) behaves for the totality of the vast collection of paths in position

and momentum space. Additionally, we cannot ensure the path integral’s meaningful
convergence. An idea to solve this issue is to rewrite the integrations in such a way
that the contributions of as many alternative paths as possible cancel out and only a
few dominating ones remain, that might have a somewhat controlled phase.
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3 The Saddle Point Method

3 The Saddle Point Method

The saddle point method is a tool to approximate integrals of the form

I (k ) =

x2∫
x1

dxf (x )ek
2g(x ) (26)

for large k . The premises are that f and g are analytic functions R −→ R and that we
know the global maximum x0 of g with x1 < x0 < x2 and f (x0) , 0. Then we use Taylor
expansion of g around x0 to get the value in dependence of k :
Let r = k (x − x0), dx = dx

dr
dr = dr

k
, r1 = k (x1 − x0), r2 = k (x2 − x0). Hence

k 2g(x ) = k 2g(x0) + k 2(x − x0) g ′(x0)︸︷︷︸
=0

+k 2(x − x0)2 g
′′(x0)
2

+ k 2(x − x0)3 g
′′′(x0)

6
+ k 2(x − x0)4 g

′′′′(x0)
24

+ . . . (27)

= k 2g(x0) + r 2 g
′′(x0)
2

+ k−1r 3 g
′′′(x0)

6
+ k−2r 4 g

′′′′(x0)
24

+ . . . (28)

and thus

ek
2g(x ) = ek

2g(x0)+r2 g′′(x0)
2 ek

−1r3 g′′′(x0)
6 +r4k−2 g′′′′(x0)

24 +... (29)

= ek
2g(x0)+r2 g′′(x0)

2

(
1 + k−1(r 3 g

′′′(x0)
6

) + k−2(r 6 g
′′′(x0)2

72
+ r 4 g

′′′′(x0)
24

) + . . .

)
. (30)
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Similarly, the expansion of f gives

f (x ) = f (x0) + (x − x0)f ′(x0) + (x − x0)2 f
′′(x0)

2
+ (x − x0)3 f

′′′(x0)
6

+ . . . (31)

= f (x0) + k−1rf ′(x0) + k−2r 2 f
′′(x0)

2
+ k−3r 3 f

′′′(x0)
6

(32)

= f (x0)
(
1 + k−1r

f ′(x0)
f (x0)

+ k−2r 2 f
′′(x0)

2f (x0)
+ k−3r

f ′′′(x0)
6f (x0)

+ . . .

)
, (33)

and the integral becomes

I (k ) =

x2∫
x1

dxf (x )ek
2g(x )

=

x2∫
x1

dxf (x0)
(
1 + k−1r

f ′(x0)
f (x0)

+ k−2r 2 f
′′(x0)

2f (x0)
+ . . .

)

· ek
2g(x0)+r2 g′′(x0)

2

(
1 + k−1(r 3 g

′′′(x0)
6

) + k−2
· · · + . . .

)
=

f (x0)ek2g(x0)

k

r2∫
r1

drer
2 g′′(x0)

2

1 +

∞∑
n=1

k−nPn(r )

 , (34)

where Pn are fixed polynomials that can be calculated (with dependence on the
derivatives of f and g at x0), which are odd for odd n and even for even n. The limit
for very large k means for the integration limits that r1 = k (x1 − x0) tends towards
−∞ and r2 = k (x1 − x0) towards +∞. As the term er

2 g′′(x0)
2 gets very small very fast for

large r (since g ′′(x0) is negative because we have a maximum), it doesn’t make a big
difference if we integrate from −∞ to +∞ instead of from r1 to r2. This makes it a
Gaussian integral where the summands with odd n result in integral values of zero.
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3 The Saddle Point Method

It evaluates to

I (A) =
f (x0)ek2g(x0)

k

+∞∫
−∞

drer
2 g′′(x0)

2

1 +

∞∑
n=1

k−nPn(r )

 (35)

= f (x0)ek
2g(x0)

√
2π

−k 2g ′′(x0)

1 +

∞∑
n=1

k−nC2n

 (36)

with some constants Cn that can be calculated from the given functions. In general,
the series

∑
∞

n=1 k
−2nC2n has zero radius of convergence, but we still have

∞∑
n=1

k−2nC2n =

k−1∑
n=1

k−2nC2n + O(k−2k ) (37)

in the strict mathematical sense of O. Thus we can write

I (A) = f (x0)ek
2g(x0)

√
2π

−k 2g ′′(x0)

(
1 +

C2

k 2 + O(k−4)
)
. (38)

With this, we have found an approximation for the integral which can be calculated
quickly from the values of the first few derivatives of f and g at the global maximum
x0 of g and that becomes accurate for large k .
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4 The Method of Wick Rotation

We present method that is commonly used to calculate the path integral

(xR.tb |xL.ta) =

∫
Dx e

i
~

tb∫
ta

dt(m
2 ẋ 2
−V (x ))

. (39)

It essentially consists of rotating the direction of time integration
tb∫
ta

dt from the real

to the imaginary axis. Descriptions of this method are given in most books on path
integrals, for example [Kleinert, 1995] and [Altland and Simons, 2010], or in the
article [Tanizaki and Koike, 2014].

First, the integration variable τ := i (t − tb+ta
2 ) is introduced; then

dt =
dt

dτ
dτ = −idτ, (40)

while the integration limits become i L2 and−i L2 withL := tb−ta , and ẋ can be expressed
as

ẋ =
dx

dt
=

dx

−idτ
= i

dx

dτ
=: ix ′. (41)

Thus the time integral can be rewritten

i

~

tb∫
ta

dt

(
mẋ 2

2
− V (x )

)
=

i

~

i L2∫
−i L2

−idτ

(
−mx ′2

2
− V (x )

)
=
−1
~

i L2∫
−i L2

dτ

(
mx ′2

2
+ V (x )

)
. (42)
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4 The Method of Wick Rotation

−4

−4i

−3

−3i

−2

−2i

−1

−i

1

i

2

2i

3

3i

4

4i

0
× ta × tb

× −i L2

× i L2

C

Figure 1: The imaginary integration path

As expressed by the imaginary integration limits, the integral is taken along the

imaginary axis now, as pictured in figure 1. Note that the integral −1
~

i L2∫
−i L2

dτ(mx ′2

2 + V (x ))

still evaluates to the same number, due to the imaginary integration path, and hence
still assumes imaginary values. Here is where the crucial trick happens: calculating
the transition probability (xR.−i L2 |xL.i

L
2 ) between states in imaginary time instead of

the number (xR.tb |xL.ta) that we are finally interested in.
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Ultimately, it is possible to calculate the value of (xR.−i L2 |xL.i
L
2 ) as a function of ita

and itb . It will eventually still be smooth and can be analytically continued to a
holomorphic function, allowing its evaluation at the real time values which we are
actually interested in.

The Wick rotation is done by simply replacing the times ta with i L2 and tb with i L2 in
the previous considerations, which leads to the expression

(xR.i
L

2
|xL. − i

L

2
) =

∫ ∫
Dx
Dp

2π~
e

−1
~

L
2∫

−
L
2

dτ(mx ′2
2 +V (x ))

. (43)

Now the exponent assumes real values and the path integral as a whole resembles
the real integral in equation 26. This allows us to use the saddle point method:
The transition probability can be determined by only regarding the paths where the
action

S =

L
2∫

−
L
2

dτ

(
mx ′2

2
+ V (x )

)
(44)

is minimal under small variations. If we compare this expression with the original ac-
tion, we see that what happened is that the minus sign in front of the potential switched
to a plus sign. Hence the action extremization problem can be interpreted as that of
the original potential flipped over the x -axis. The variations of paths correspond to
the derivatives in the treatment of non-functional integrals. We use the name xc(τ) for

this path that minimizes the problem’s action: 0 =

L
2∫
−

L
2

dτ
(
mδx ′2c

2 + V (δxc)
)
. Finding this

path is the classical problem of finding the equation of motion for the given Lagrange
function L = mx ′2

2 + V (x ). The solution is given by the Euler-Lagrange equation

−mx ′′ +
dV

dx
(x ) = 0. (45)
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5 Wick Rotation for a Particle in a Double Well Potential

Multiplication of this equation with x ′ yields

−mx ′′x ′ +
dV

dx
(x )x ′ = 0 (46)

which when integrated over time results in

0 =

τ∫
−

L
2

dτ′(−mx ′′x ′ +
dV

dx
(x )x ′) =

[
−
mx ′2

2
+ V (x )

]τ
−

L
2

(47)

= −
mx ′(τ)2

2
+ V (x (τ)) +

mx ′(−L
2 )2

2
− V (x (−

L

2
)). (48)

If we look at the infinite time limit, i.e. tb − ta = L→ ∞, and if we assume one single
tunneling process while the particle is at rest at the point −a (where the potential
energy is set to 0) for large negative times, then the lower integration boundary terms
are 0 and the minimising path xc satisfies

V (xc) =
mx ′2c

2
. (49)

After we have found this minimizing path, we insert equation 49 into equation 44 and
get the saddle point action

Sc =

L
2∫

−
L
2

dτ(mx ′2c ). (50)

5 Wick Rotation for a Particle in a Double Well Potential

We want to calculate the transition probability for the Hamiltonian

H =
P 2

2m
+ κ(X + a)2(X − a)2 (51)
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and xL = −a, xR = a in a time span L = tb − ta with the momentum and hence the
total energy being zero at the beginning, as done in for example in [Kleinert, 1995]
and [Cherman and Ünsal, 2014].

The Hamiltonian given by equation 51 describes a particle in a double well potential
as shown in figure 2.

x

V (x )

a−a

κa4

Figure 2: The Potential V (x ) = κ(x + a)2(x − a)2

The path integral formalism states that the transition amplitude is

(a.tb |−a.ta) =

∫
Dx e

i
~S [x ] (52)

where for the regarded double well potential the classical action is

S [x ] =

tb∫
ta

dt

(
mẋ 2

−

(
mẋ 2

2
+ κ(x + a)2(x − a)2

))
=

tb∫
ta

dt

(
mẋ 2

2
− κ(x 2

− a2)2

)
. (53)

We are interested in the limit probability (a.∞|−a.−∞) of the particle tunnelling from
the bottom of the left to the bottom of the right valley given infinite time.
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5 Wick Rotation for a Particle in a Double Well Potential

To do this, we apply the Wick rotation as introduced in section 4, i.e. we rotate the
paths x (t) to imaginary time by changing the time integration limits:

(a.i∞|−a.−i∞) =

∫
Dx e

i
~

i∞∫
−i∞

dt

(
m( ∂x

∂t
)2

2 −κ(x 2
−a2)2

)
. (54)

Writing τ = it helps us simplify the exponent

i

~

i∞∫
−i∞

dt

m(∂x∂t )2

2
− κ(x 2

− a2)2

 =
i

~

i∞∫
−i∞

−i idt

−m( ∂x∂it )2

2
− κ(x 2

− a2)2


=

1
~

∞∫
−∞

dτ

−m(∂x∂τ )2

2
− κ(x 2

− a2)2


=
−1
~
SE [x ],

(55)

where

SE [x ] =

∞∫
−∞

dτ

(
m

2
(
∂x
∂τ

)2 + κ(x 2
− a2)2

)
. (56)

Ultimately, the path integral has the form

(a.i∞|−a.−i∞) =

∫
Dx e

1
~SE [x ]. (57)

Assuming that 1
~

is very big in comparison with typical absolute values of the action,
the idea is to use the saddle point method, looking only at those paths x that minimize
SE [x ]. Finding such a trajectory which is minimizing the action is done by solving the
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Euler-Lagrange equation

0 =
∂L
∂x
−

d

dτ
∂L

∂
(
∂x
∂τ

) , (58)

where L(x , ∂x∂τ , τ) is the integrand in the action integral, in our case L = m
2 (∂x∂τ )2 +κ(x 2

−

a2)2. Thus, we need to look for trajectories x (τ) that fulfill

0 = 4κx (x 2
− a2) − 2

m

2
∂2x

∂τ2 . (59)

We set

λ :=

√
2κ
m
. (60)

The second order differential equation

∂2x

∂τ2 = 2λ2x (x 2
− a2), (61)

with the boundary condition ∂x
∂τ (τ = −∞) = 0 that the particle is at rest at the beginning,

is solved by
x (τ) = a tanh(λa(τ − τ0)), (62)

as we show in the following calculation:

∂2(a tanhλaτ)
∂τ2 = λ2a3

∂2 sinhλaτ
coshλaτ

(∂(λaτ))2

= λ2a3 ∂
∂(λaτ)

cosh2 λaτ − sinh2 λaτ

cosh2 λaτ

= λ2a3 ∂
∂(λaτ)

(1 − tanh2 λaτ)

= λ2a32 tanhλaτ (tanh2 λaτ − 1)

= 2λ2(a tanhλaτ) ((a tanhλaτ)2
− a2).

(63)
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5 Wick Rotation for a Particle in a Double Well Potential

τ0

a

τ

x

a tanh(λa(τ − τ0))

Figure 3: A solution for infinite imaginary time

The parameter τ0 surely doesn’t alter the property of being a solution for differential
equation 61, but it gives us a degree of freedom which makes sense, physically as we
calculate the total probability of tunneling at any arbitrary time, and mathematically
as we deal with a 2nd order linear differential equation with 1 boundary condition.
Note that x (τ) = −a tanh(λa(τ − τ0)) would solve the differential equation 61 as well,
but since it isn’t in accord with the problem’s boundary condition of the particle
starting at −a and ending up at +a, we do not need to regard this solution.

A plot of this solution is shown in figure 3. An interpretation is that the particle stays
close to its starting point for a long time, then switches to the other well very rapidly
and stays there forever without going back and forth.

Now we calculate the (rotated) action of this solution by inserting it into equation
56:
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SE [a tanhλaτ] =

∞∫
−∞

dτ
(
m

2
(
a tanhλaτ

∂τ
)2 + κ((a tanhλaτ)2

− a2)2
)

=

∞∫
−∞

dτ
(
m

2
(λa2(1 − tanh2 λaτ))2 + κ(a2(tanh2 λaτ − 1))2

)

= 2κa4

∞∫
−∞

dτ(1 − tanh2 λaτ)2

= 2κa4

∞∫
−∞

dτ(1 − tanh2 λaτ)
∂(tanhλaτ)

∂λaτ

= 2
κ
λ
a3

∞∫
−∞

(1 − tanh2 λaτ) d (tanhλaτ)

=
√

2mκ a3
[

tanhλaτ −
1
3

tanh3 λaτ
]+∞

−∞

=
√

2mκa3(1 −
1
3
− (1 −

1
3

))

=
8
3

√

2mκa3

(64)

6 Trying the Same Approach While Staying in Real Time

If we try to do the same calculation for the non-rotated action S [x ] in 53, we end up
with the Euler-Lagrange equation

−
∂2x

∂t2 = 2λ2x (x 2
− a2). (65)

It is the same as for the rotated, Euclidean action except for the minus sign in front
of the second derivative. The solution that is analogous to the hyperbolic tangent
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7 Between Imaginary and Real Time

function from above is x (t) = ±ia tanλa(t − t0). This can be seen easily as

tanλat =
sinλat
cosλat

=
e iλat − e−iλat

i (e iλat + e−iλat )

=
sinh iλat
i cosh iλat

= −i tanh iλat

(66)

and thus

−
∂2(ia tanλat)

∂t2 = −
∂2(a tanhλait)
−∂(it)2

63
= 2λ2(a tanhλait) ((a tanhλait)2

− a2)

= 2λ2(ia tanλat) ((ia tanλat)2
− a2).

(67)

The issue with this ±ia tan a(t − t0) solution is that it describes a path on the imaginary
axis that even has singularities. Hence, there is no apparent way to interpret it
as connecting the real points −a and +a. As there are no other physical solutions
for equation 65, we have to conclude that the direct approach of using the saddle-
point/Euler-Lagrange method on the original, not rotated problem doesn’t produce a
solution path.

7 Between Imaginary and Real Time

In order to receive a meaningful path that is minimizing the action, we rotated the
time axis from purely real to purely imaginary values. This corresponds to a rotation
by an angle of φ = π

2 in the complex plane, or a multiplication with the phase factor
e
π
2 i . Now that we know that we get a solution for φ = π

2 , which is unfortunately very
distinct from the not rotated case φ = 0 that represents our actual problem, the idea is
to inspect what lies in between the two angles. By this we mean to allow any value for
φ and to see what we get for (a.eφi∞|−a.−eφi∞). This section’s deductions are based
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on [Cherman and Ünsal, 2014]. Just as in equation 54, the expression for this sloped
time axis integral is

(a.eφi∞|−a.−eφi∞) =

∫
Dx e

i
~

−eφi∞∫
eφi∞

dt

(
m( ∂x

∂t
)2

2 −κ(x 2
−a2)2

)
. (68)

We rewrite the action (this time setting τ = eφi ):

Sφ[x ] =

eφi∞∫
−eφi∞

dt

m(∂x∂t )2

2
− κ(x 2

− a2)2


=

eφi∞∫
−eφi∞

e−φieφidt

me2φi
(

∂x
∂(eφi t)

)2

2
− κ(x 2

− a2)2


= e−φi

∞∫
−∞

dτ

me2φi
(
∂x
∂τ

)2

2
− κ(x 2

− a2)2

 .
(69)

This produces the Euler-Lagrange equation

0 = −4κx (x 2
− a2) − 2e2φim

2
∂2x

∂τ2 , (70)

or

− e2φi ∂
2x

∂τ2 = 2λx (x 2
− a2). (71)
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7 Between Imaginary and Real Time

It is solved by x (τ) = ±a tanh(e−(φ− π2 )iλa(τ − τ0)), as we see similar as before that

−e2φi ∂
2(a tanh e−(φ− π2 )iλaτ)

∂τ2 = i
∂2(ia tanh e−φi iλaτ)

∂(e−φiτ)2

63
= 2λi (ia tanh e−φi iλaτ) ((ia tanh e−φi iλaτ)2

− (ia)2)

= 2λ(a tanh e−(φ− π2 )iλaτ) ((a tanh e−(φ− π2 )iλaτ)2
− a2).

(72)

Above, we have seen that this solution doesn’t connect −a with a in the infinite time
limit if we set φ = 0, but does is perfectly for φ = π

2 . What happens for other values
of φ?

We use Euler’s formula to expand

e−(φ− π2 )i = cos(φ −
π
2

) − i sin(φ −
π
2

) =: c − is (73)

and have

tanh(e−(φ− π2 )iλaτ) =
e (c−is)λaτ

− e−(c−is)λaτ

e (c−is)λaτ + e−(c−is)λaτ

=
ecλaτe−isλaτ − e−cλaτe isλaτ

ecλaτe−isλaτ + e−cλaτe isλaτ
.

(74)

The limit for τ −→ ∞ depends on the sign of c:

For c > 0
ecλaτe−isλaτ − e−cλaτe isλaτ

ecλaτe−isλaτ + e−cλaτe isλaτ
τ→∞
−−−→

ecλaτe−isλaτ

ecλaτe−isλaτ
= 1

For c < 0
ecλaτe−isλaτ − e−cλaτe isλaτ

ecλaτe−isλaτ + e−cλaτe isλaτ
τ→∞
−−−→

−e−cλaτe isλaτ

e−cλaτe isλaτ
= −1

For c = 0
ecλaτe−isλaτ − e−cλaτe isλaτ

ecλaτe−isλaτ + e−cλaτe isλaτ
=

e−isλaτ − e isλaτ

e−isλaτ + e isλaτ
= −si tanλaτ, as of course c = 0

means s = 1 or s = −1.
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After doing analogous considerations for τ → −∞, as a result we get the following
table:

φ a tanh(e−(φ− π2 )iλaτ) a tanh(e−(φ− π2 )iλaτ) −a tanh(e−(φ− π2 )iλaτ) −a tanh(e−(φ− π2 )iλaτ)
(mod 2π) τ→ −∞ τ→ +∞ τ→ −∞ τ→ +∞

0 < φ < π −a +a +a −a

π < φ < 2π +a −a −a +a

φ = 0 ia tanλaτ ia tanλaτ −ia tanλaτ −ia tanλaτ

φ = π −ia tanλaτ −ia tanλaτ ia tanλaτ ia tanλaτ

Thus, the solutions that connect −a with +a are x (τ) = a tanh(e−(φ− π2 )iλa(τ−τ0)) in the
case 0 < φ < π and x (τ) = −a tanh(e−(φ− π2 )iλa(τ− τ0)) in the case π < φ < 2π, while for
the original problem φ = 0, there is no solution of this type.

To connect this path with a transition probability, we need to calculate its action. It
is

Sφ[a tanh e−(φ− π2 )iλaτ] = e−φi
∞∫

−∞

dτ

me2φi
(
∂x
∂τ

)2

2
− κ(x 2

− a2)2


= e−φi

∞∫
−∞

dτ

me2φi

2

(
∂(a tanh e−(φ− π2 )iλaτ)

∂τ

)2

− κ((a tanh e−(φ− π2 )iλaτ)2
− a2)2


= e−φi

∞∫
−∞

dτ

(
me2φi

2
(e−(φ− π2 )iλa2(1 − tanh2 e−(φ− π2 )iλaτ))2

− κ(a2(tanh2 e−(φ− π2 )iλaτ − 1))2

)

= e−φi
∞∫

−∞

dτ

(
me2φie−2φieπi

2
(λa2(1 − tanh2 e−(φ− π2 )iλaτ))2

− κ(a2(tanh2 e−(φ− π2 )iλaτ − 1))2

)
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7 Between Imaginary and Real Time

= −2e−φiκa4

∞∫
−∞

dτ(1 − tanh2 e−(φ− π2 )iλaτ)2

= −2e−φiκa4

∞∫
−∞

dτ(1 − tanh2 e−(φ− π2 )iλaτ)
∂(tanh e−(φ− π2 )iλaτ)

∂e−(φ− π2 )iλaτ

= −2e−φi
κ

e−(φ− π2 )iλ
a3

∞∫
−∞

(1 − tanh2 e−(φ− π2 )iλaτ) d (tanh e−(φ− π2 )iλaτ)

=
√

2mκ a3
[

tanh e−(φ− π2 )iλaτ −
1
3

tanh3 e−(φ− π2 )iλaτ
]+∞

−∞

=
√

2mκa3(1 −
1
3
− (1 −

1
3

)) (for 0 < φ < π)

=
8
3

√

2mκa3

(75)

In the second to last step, we worked in the area 0 < φ < π where a tanh e−(φ− π2 )iλaτ

is the connecting, action minimizing path. For π < φ < 2π, we get a minus sign here
that cancels out with the one we get for taking the −a tanh e−(φ− π2 )iλaτ solution, and
the action is the same.

The interesting point about this is that the action does not depend on the angle φ at
all. This means that Sφ[a tanh e−(φ− π2 )iλaτ], if seen as a function of φ which is defined
for φ , nπ, is constant and thus can easily be analytically continued in φ = 0 with the
same value. Hence, for calculating the transition probability, the rotation angle is not
important and we can readily calculate it with a rotated path. Thus, we only need a
reason why a rotated path is physical; for this, any ever so small rotation would be
sufficient.
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8 The Divergence of a tanh(e−(φ−π2 )iλa(τ + τ0)) for φ→ 0

We want to understand what happens when φ approaches and becomes zero and
where this discontinuous behavior of the end points jumping from the real to the
imaginary axis arises from. So let us look at how the graphs of a tanh(e−(φ− π2 )iλa(τ+τ0))
with a = 1, λ = 1 and τ0 = 0 are shaped for some values of φ.
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Figure 4: Trajectories for φ = π
2 and φ = 1.5

In figure 4 we have drawn the path of motion in the complex plane for φ = π
2 and for

φ = 1.5 with MATLAB R2013a. The π
2 -case, as discussed in section 5, just produces

a line from −1 to +1 that lies straight on the real axis. For the a little smaller angle
of φ = 1.5 we see a little bend through regions with non-vanishing imaginary parts
already.
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8 The Divergence of a tanh(e−(φ− π2 )iλa(τ + τ0)) for φ→ 0
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Figure 5: Trajectories for φ = 1.2 and φ = 0.8

If we decrease the value of φ to 1.2 and further to 0.8, as plotted in figure 5, the bend
becomes bigger and the path even crosses real points on the opposite sides of start
and end points before approaching them.
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Figure 6: The graphs of tanh(e (−(φ−π/2)i)t) for φ =
0.4 0.2 0.1
0.05 0.02 0.01
0.005 0.002 0.001
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8 The Divergence of a tanh(e−(φ− π2 )iλa(τ + τ0)) for φ→ 0

Nine further steps of letting φ go towards 0 are shown in figure 6. With decreasing
φ, the number of windings as well as the extent of the path increase. That is the
explanation for the discontinuity at φ = 0: the paths that represent the solutions
become larger in an intuitive sense and tend towards being infinitely long with φ

approaching 0. Hence there is no well-behaved limit path of this sequence that would
belong to a similar real-time solution.

Let us try to quantify the apparent divergence. Figure 6 indicates that the path’s
maximal distance from the origin is continuously increasing with decreasing φ. A
glance at the numbers suggests that it might be inversely proportional to φ.
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Figure 7: Behaviour of the path’s radius with decreasing φ
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Figure 7 shows a plot of that radius of the path over 1
φ , and indeed, we get a straight

line with slope 0.63604. That means that the paths are really diverging proportionally
to 1

φ .

This divergence of the solutions for φ → 0 is an explanation for the fact that some
rotation is needed to receive a path connecting the wells.

9 A Small Complex Phase Arising from Complex Energy

Our goal in this section is to find out which physical occurrences could be responsible
for an infinitesimal time axis rotation.

The tangent solution of differential equation 65 for the non-rotated problem is the
solution that has zero momentum at the initial and final state. We now examine what
we get if we allow small deviations from this constraint.

Multiplying both sides of equation 65 with ∂x
∂t , which is allowed as the solutions won’t

have finite time spans with ∂x
∂t = 0, extends the equation to

−
∂2x

∂t2

∂x
∂t

= 2λ2x
∂x
∂t

(x 2
− a2) (76)

which we can integrate to get

−
1
2

(
∂x
∂t

)2

=
1
2
λ2(x 2

− a2)2
−
C

2
(77)

with some integration constant −C
2 . Rewriting this further leads to

∂x
∂t

= ±
√
−λ2(x 2 − a2)2 + C (78)
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9 A Small Complex Phase Arising from Complex Energy

and

∂t
∂x

=
±1√

C − λ2(x 2 − a2)2
. (79)

We integrate this one again to receive

t − t0 =

t∫
t0

dt =

x∫
0

±dx√
C − λ2(x 2 − a2)2

. (80)

If we simply took C = 0, this would give

t − t0 = ±
1
iλ

x∫
0

dx

x 2 − a2 = ∓
1

iλa
artanh(

x

a
), (81)

or

x = ±a tanh(iλa(t − t0)) = ±ia tan(λa(t − t0)), (82)

in accordance with section 6.

At this point we want to analyse the role of the integration constant C and to fathom
whether there is plausibility for it to be enforcing a small distortion of the solution
which is linked to a complex argument. Then it would produce a tunnel path as
discussed in the previous sections.

If we regard equation 77 at the starting point x = −a (or, at the end point x = a), we
get (

∂x
∂t

)2

= C (83)
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Consequently, the physical interpretation of C
2m is the kinetic energy at the beginning

of the tunnelling process.

For example, if C is bigger than the potential barrier of λ2a4 = κ
2m a4, then the ex-

pression under the square root in equation 78 is positive for any x . Therefore, the
differential equation has a real, i.e. actually classical, solution. Then, as one would
suspect, no quantum tunnelling via complex paths is needed to ’jump’ from one valley
to the other.

Then again for the tunnelling problem we are actually interested in, the particle is ini-
tially resting, i.e. C = 0 at x = −a, which problematically leads to the non-connecting
tangent solution. However, since we proved above that even an infinitesimal phase
in the equation leads to connecting solutions, we hope to achieve this by assuming
an infinitesimal, possibly complex, initial energy C . A physical justification or rather
motivation for this idea is that quantum mechanics, which is the framework that is
responsible for tunnelling in the first place, demands a non-zero kinetic energy by
Heisenberg’s uncertainty principle alone.

Letting Wolfram Mathematica 10.3 calculate the integral in equation 80 for a = 1,
λ = 1, ± = +, t0 = 0 gives

tC (x ) =

x∫
0

dx√
C − (x 2 − 1)2

=

−

i
√

1 − x 2

1−
√
C

√
1 − x 2

1+
√
C
F

(
i arsinh(

√
−1

1−
√
C
x )|1−

√
C

1+
√
C

)
√
−

1
1−
√
C

√
C − (x 2 − 1)2

(84)

where F is the incomplete elliptic integral of the first kind. For C , 0, this is quite a
complicated term and forming the inverse function xC (t) does not result in a usable
expression. Thus instead of inverting tC (x ), we take the inverse of the connecting
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9 A Small Complex Phase Arising from Complex Energy

phased tanh solution from section 7: In

tanh(e−(φ− π2 )iτ) = xφ(τ) (85)

we apply artanh on both sides to get

τφ(x ) = e (φ− π2 )i artanh(x ). (86)

Our hope is that for small energiesC and small anglesφ, the function tC (x ) approaches
τφ(x ). Note that we might need to choose the energy C complex. Therefore we let
the phase of C fixed as the absolute value goes to 0, just as for φ that stays real and
positive. To compare the complex-valued functions tC (x ) and τφ(x ), we regard their
real and imaginary part separately.

Figure 8: Real and imaginary part of τ10−9(x )

Figure 8 shows Mathematica plots of the real and imaginary part of τφ(x ) over real
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values of x from −1 to +1 for the angle φ = 10−9. As for our tunneling problem,
we want the particle to be at −1 at (infinitely negative) real time, the right hand side
diagram shows that keeping x real is not working. Actually, we have already seen
that the path x must leave the real axis, as illustrated in the plots in section 8. So we
settle for purely real time and look at the equation τφ(x ) = 0.

Figure 9: Contour plot of τ10−1(x ) = 0 for the standard branch of artanh and for all
branches

On the left-hand side of figure 9, we see the points where τ10−1(x ) = e (.1− π2 )i artanh(x ) =

0 holds for the standard definition of artanh. The problem here is that the complex
inverse function of artanh is not defined on the whole complex plane and thus, artanh
is just representing one of its branches. Indeed, there is [cite enc] the identity

artanh(x ) =
1
2

ln(
1 + x

1 − x
). (87)
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9 A Small Complex Phase Arising from Complex Energy

Thus, for the corresponding areas, the correct function to take is artanh(x ) + nπi with
an integer n. On the right-hand side of figure 9, we see where the imaginary part
of the time vanishes if we allow x to take any branch. It is the anticipated picture
that we got without taking the inverse function and drawing the path for real time in
equation 6.

For

tC (x ) = −

i
√

1 − x 2

1−
√
C

√
1 − x 2

1+
√
C
F

(
i arsinh(

√
−1

1−
√
C
x )|1−

√
C

1+
√
C

)
√
−

1
1−
√
C

√
C − (x 2 − 1)2

(88)

we encounter similar difficulties with different branches.

Figure 10: Contour plot of t10−1i (x ) = 0 for the standard branch

Figure 10 shows the points where this function has vanishing imaginary part. It has
a similar shape to the plot for the standard branch of τ10−1(x ). This fact gives us hope
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that we get a double-spiral connecting x = −1 with x = +1 as well, when regarding the
other branches accordingly. Unfortunately, the higher branches of F and the branch
cuts between them get quite complicated. Due to this, it was not possible to produce
similar contour plots for those with Mathematica 10.3.

However, tC (x ) is still a good candidate for the tunnelling path. We explore its affinity
with τφ(x ) on the real interval between −1 and +1 as it is easy to handle here and
the identity theorem from complex analysis states that coincidence of the functions
here would imply identity. To investigate which phase C should have to make tC (x )
similar to τφ(x ), we first regard the real part of tC (x ). In figure 11 the plots for C = 10−9

and C = 10−9i are pictured.

Figure 11: Real part of t10−9(x ) and t10−9i (x )

While for purely real C , tC (x ) vanishes for −1 < x < 1 and thus doesn’t coincide
with τφ(x ), it very well resembles τφ(x ) if we take it purely imaginary. As playing
around with the numbers shows, it does so best if φ and |C | are in the same order of
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9 A Small Complex Phase Arising from Complex Energy

magnitude. Even if we do not take the direct resemblance with τφ(x ) into account,
we observe that the inverse function of tC (x ) with small imaginary C - its graph is
obtained by simply flipping the right-hand plot in figure 11 - does indeed connect
<xC (−∞) = −1 with <xC (∞) = +1 and thus fulfills the real part part of being a
tunneling process.

Figure 12:
<t10−9(i+r )

<t10−9i
− 1 for r = 0, 1, 100, 1000

For the question what happens if C has both a real and an imaginary part, we plotted
<t10−9(i+r )

<t10−9i
− 1 in figure 12 for several real parts r . For |x | not too close to 1, the relative

difference to r = 0 is small. Thus we are free to choose the phase of C by adding even
a comparatively large real part to a very small imaginary part, as long as the absolute
value of C still remains small. That is, it might be possible to have C of the form
ε + ε2i such that in the limit the energy itself is just an infinitesimal phase away from
being purely real.
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Now we compare the imaginary parts of tC (x ) with small C of different phases to
τφ(x ).

Figure 13: Imaginary part of t0(x ) and t10−9i (x ) in comparison
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Figure 14: =t10−9(i+r ) for r = 0, 0.5, 0.1, 0.001

The plots in figure 13 show the imaginary part of t0(x ) and that it basically doesn’t
change if we have a small positive imaginary energy C . It is worth noting that if
the imaginary part of C is negative, the curve is flipped and thus isn’t a solution to
the tunneling problem itself, but can be salvaged by assigning ± to − before equation
84.

Also, a real component of C does not alter the shape of the curve in the |C | → 0 limit,
as it then approaches the curve without real part, see figure 14. Again, this well holds
in the case C = ε + ε2i , where the phase angle > 0 becomes arbitrarily small.
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Figure 15: Comparison between the imaginary parts of t10−9i and τ10−9 shows that they
are nearly the same

Ultimately, to see how the imaginary parts of tC and τφ compare, we visualized their
ratio in figure 15 and see that it is very close to 1. Thus, for small |C | with positive
imaginary part, the imaginary parts of tC and τφ coincide quite precisely.

The bottom line of this comparison is that tC (x ) likely approximates τφ(x ) in the limit
of C , φ→ 0 if the energy C has at least a small imaginary part.

As developing a precise technique for analytically examine the function tC (x )’s be-
haviour for C → 0, we have to content ourselves with this numerical comparison.
It indeed suggests that tC (x ) converges towards the τφ(x )-solution. This shifts the
problem from explaining the concept of imaginary time towards devising a notion of
not purely real energy.
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10 Conclusions

With the path integral formalism, the transition amplitude between two states can be
expressed as (a.tb |−a.ta) =

∫
Dx e

i
~S [x ], for a Hamiltonian that splits into the sum of

a kinetic and a potential part which are both time-independent. With 1
~

huge as it is,
it suggests itself to only take into consideration those paths where the other parts of
the exponent are large. This notion of largeness is not naturally given in the context
of complex numbers. Thus it is helpful to make the exponent purely real. In certain
situations, this can be accomplished by a trick called Wick Rotation. This a well
established method for solving path integral problems that consists of a 90◦-rotation
of the time axis in the complex plane.

We showed that for the Hamiltonian describing a particle in a double well potential,
the Wick Rotation can be replaced by the rotation by an arbitrarily small angle. The
question that arises is why there should be such a thing like complex time in the first
place. Our idea to answer this is by assuming small excursions of the system’s energy
from the real line into the partly imaginary realm of the complex plane. Without those
deviations, the situation equals classical mechanics, not allowing tunneling. But as
soon as the energy has an imaginary part, a path with minimal action connecting the
two wells might be possible; it is to be noted that this position-space path runs far
around in the complex plane.

What remains open is to precisely show that the partially imaginary energy leads to
a path that exactly connects the bottom points of the well. The problem that we had
here is that we ended up with a time function that cannot simply be inverted to a
position function, a problem similar to that of the complex logarithm’s branching.
Another interesting task is to investigate what physics actually happens that leads to
imaginary energies. A maybe over-ambitious attempt could be to trace back general
quantum mechanical axioms to it. Furthermore, as our considerations take place in
the infinite time limit, it might be worth to look for results for finite time spans. And of
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course there are certainly other potentials and situations where a slight modification
of the same contemplations leads to comparable outcomes.
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