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Abstract. Synthetic differential geometry provides an axiomatic definition of dif-
ferential calculus by introducing infinitesimals in the form of non-zero numbers
that square to zero. In the classical logic of sets, trying to implement a number
line with such nilsquare infinitesimal elements quickly leads to inconsistencies.
However, synthetic differential geometry can exist within topoi different from the
topos of sets. These categories have an internal constructive logic, a system which
comes without the law of excluded middle. This thesis shows the construction
of line objects in a topos of presheaves of affine schemes as well as in the smooth
Zariski topos which is built on smooth algebras.
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1 Ring Objects

A basic concept of geometry is the line. While in classical differential geometry the line is represented
by the real numbers, synthetic approaches use other objects that should still incorporate some features
of the number line. Most importantly, we want to be able to perform basic arithmetic operations on
the line, namely addition, subtraction and multiplication. Inside an arbitrary category 𝐶𝐶𝐶 with finite
products (including a terminal object 1), an object with those arithmetic operations is described by the
notion of a ring object.

1.1 Arithmetic operations

Definition 1. A ring object consists of the following data (For our purposes, we want all ring objects to
be commutative and unitary.):

• an object 𝑅

• an ‘addition’ map 𝛼 ∶ 𝑅 × 𝑅 → 𝑅 which is associative and commutative in the sense that the
following two diagrams commute:

𝑅 × 𝑅

𝑅 × 𝑅

𝑅(𝜋2, 𝜋1)

𝛼

𝛼

𝑅 × 𝑅 × 𝑅

𝑅 × 𝑅

𝑅 × 𝑅

𝑅

𝛼×1u�

1u�×𝛼

𝛼

𝛼

(1.1)

• an ‘additive neutral’ or ‘zero’ map 0u� ∶ 1 → 𝑅 and an ‘additive inverse’ or ‘negation’ map 𝜈 ∶
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1 Ring Objects

𝑅 → 𝑅, satisfying

𝑅

𝑅 × 1

𝑅 × 𝑅 𝑅

♯

1u�×1

1u�×0u�

𝛼

1u�

and 𝑅 𝑅 × 𝑅 𝑅 × 𝑅

𝑅1

♯

(1u�,1u�) 1u�×𝜈

𝛼1

0u�

(1.2)

• a ‘multiplication’ map 𝜇 ∶ 𝑅 × 𝑅 → 𝑅, which is also associative and commutative: the diagrams
1.1 with 𝛼 replaced by 𝜇 need to commute

• a ‘multiplicative neutral’ or ‘one’ map 1u� ∶ 1 → 𝑅 such that the commutativity of the left diagram
in 1.2 with 𝛼 and 0 replaced by 𝜇 and 1u�, respectively, holds

• the distributivity law holds:

𝑅 × (𝑅 × 𝑅) 𝑅 × 𝑅

(𝑅 × 𝑅) × (𝑅 × 𝑅) 𝑅 × 𝑅 𝑅

♯

1u�×𝛼

((𝜋1, 𝜋2), (𝜋1, 𝜋3))

𝜇×𝜇 𝛼

𝜇

(1.3)

Later on, we will use an indirect way to specify a ring object: Instead of giving the arithmetics as morph-
isms in 𝐶𝐶𝐶, one achieves the same by defining a coring object in the opposite category 𝐶𝐶𝐶u�u�. Naturally, such
a coring object is an object 𝑅 with all the arrows of the maps and diagrams above reversed.

Technically, the categorical product × is not associative in the strict sense: there is a natural isomorphism
called associator 𝑎u�u�u� ∶ (𝐴 × 𝐵) × 𝐶 ∼−→ 𝐴 × (𝐵 × 𝐶) which is not necessarily the identity. Therefore, in
the associativity diagram on the right hand side of 1.1, the formally correct practice would be to write
(𝑅 × 𝑅) × 𝑅 instead of 𝑅 × 𝑅 × 𝑅 and (1u�×𝛼) ∘ 𝑎u�u�u� instead of 1u�×𝛼. However, here and in what follows
we ignore these technicalities and act as if those natural isomorphism that come directly from limits
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1.2 Element notation

and colimits were identities. We think that inserting the associators in the relevant formulas should in
all cases not change the results.

The composition of the diagonal (1u�,1u�) ∶ 𝑅 → 𝑅 × 𝑅 with 𝜇 gives us the squaring operation −2 ∶
𝑅 → 𝑅. We define the subobject of nilsquare elements 𝐷 to be the ring theoretic kernel of this squaring
operation, which is the following equalizer:

𝐷 𝑅 𝑅
0

−2

eq
(1.4)

where 0 ∶ 𝑅 → 𝑅 stands for 0u� ∘ 1.

1.2 Element notation

While all of the above works perfectly fine for any category𝐶𝐶𝐶 with the necessary products, the categories
in which we will eventually need them to establish a theory of synthetic differential geometry will be
topoi and as such, they will have nice set-like properties. This allows us to use the convenient notation
with curly brackets and element glyphs. This is explained in detail in [Mac Lane and Moerdijk, 1992,
VI.6] and [Moerdijk and Reyes, 1991, Appx. 1.3]. For example, in a topos, the equalizer notation of
diagram 1.4 can be abbreviated as

(1.5) 𝐷 ∶= {𝑑 ∈ 𝑅 ∣ 𝑑2 = 0}.

The ring objects in the case that 𝐶𝐶𝐶 is the category of sets are exactly the rings from commutative algebra;
to avoid confusion, we call them set-rings. In the category of topological spaces, we get topological
rings as ring objects. Here, ring operations are continuous maps, and thus also all maps constructed
by concatenating them, i.e. all maps that are given by a polynomial. An example is ℝ with the usual
topology where open intervals form a basis of open subsets.

Since we work in a general category 𝐶𝐶𝐶, there is no immediate sense in the talking about an element
of an object 𝐴 in 𝐶𝐶𝐶. However, the notion of elements can be expanded: a generalized element of
𝐴 is a morphism with codomain 𝐴. For an object 𝑋 of 𝐶𝐶𝐶, the elements of 𝐶𝐶𝐶(𝑋, 𝐴) are called gen-
eralized elements of 𝐴 at stage 𝑋, and those at stage 1 are called global elements. Generalized ele-
ments are useful because of Yoneda’s lemma and embedding: specifying a morphism from 𝐴 to 𝐵
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2 The Axiomatisation of Synthetic Differential Geometry

is equivalent to specifying a natural transformation from 𝐶𝐶𝐶(−, 𝐴) to 𝐶𝐶𝐶(−, 𝐵), i.e. giving a morphism
𝐶𝐶𝐶(𝑋, 𝐴) → 𝐶𝐶𝐶(𝑋, 𝐵) natural in 𝑋. For a ring object 𝑅, the set 𝐶𝐶𝐶(𝑋, 𝑅) is a set-ring: addition is defined

as 𝛼u� ∶
𝐶𝐶𝐶(𝑋, 𝑅) × 𝐶𝐶𝐶(𝑋, 𝑅) 𝐶𝐶𝐶(𝑋, 𝑅)

(𝑓 , 𝑔) 𝛼 ∘ (𝑓 , 𝑔) and the other ring operations work analogously. This

allows us to use symbolic notation for ring maps as if we would define them by writing terms that de-
pend on elements. For example, a naive construction like 𝑥 ↦ 𝑥4 − 𝑥 + 1 actually describes a morphism
𝑅 → 𝑅. Later on, we will use this naive but working description of ring maps to avoid lengthy for-
mulas with many ring operation and projection maps. For a more in-depth discussion of generalized
elements, refer to [Kock, 2010, Appx. 9.2] or [Kock, 2006, ch. II.1].

2 The Axiomatisation of Synthetic Differential
Geometry

2.1 The idea

The idea of synthetic differential geometry is to define derivatives without using the limit process that
relies on the convenient but sometimes impalpable properties of ℝ.

The idea that we will pursue can be established in an example: How do we calculate the derivative of
a function like 𝑓 (𝑥) = 𝑥3 + 1 at a point 𝑥0 in high school mathematics? It is defined as

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ = lim

ℎ→0

𝑥3 + 3𝑥2ℎ + 3𝑥ℎ2 + ℎ3 + 1 − 𝑥3 − 1
ℎ .(2.1)

If we only take a look at the term 𝑓 (𝑥 + ℎ) = 𝑥3 + 3𝑥2ℎ + 3𝑥ℎ2 + ℎ3 + 1 and separate the powers of ℎ,
then we see that it consists of the following parts:

The h0-term 𝑥3 + 1 = 𝑓 (𝑥) will be subtracted for the calculation of the derivative.

The h1-term 3𝑥2 ⋅ ℎ is just ℎ times the derivative 𝑓 ′ of 𝑓 .

The h≥2-terms 3𝑥ℎ2 + ℎ3 do not matter for determining the derivative.

That means that, at least in this case where 𝑓 is a polynomial, what we do when calculating the deriv-
ative of 𝑓 is just the same as calculating 𝑓 (𝑥 + ℎ) and extracting its term linear in ℎ.
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2.2 The axiom

Something similar happens in the Taylor expansion:

𝑓 (𝑥0 + 𝑑) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)𝑑 +
𝑓 ″(𝑥0)

2 𝑑2 +
𝑓 ‴(𝑥0)

6 𝑑3 + …(2.2)

The first derivative is the part of the expansion that is linear in 𝑑. A way to formulate this is that
calculating the derivative of a function is basically calculating 𝑓 (𝑥0 + 𝑑) − 𝑓 (𝑥0) ’modulo’ powers of 𝑑
of order at least 2. Unfortunately, the real numbers don’t contain such a number 𝑑 that squares to zero,
and forming a ring quotient modulo some finite – and thus invertible – number only yields the 0 ring.

2.2 The axiom

This difficulty with ℝ cannot be circumvened by taking another set-ring.
Non-standard analysis uses approaches like the hyperreal numbers that introduce infinitesimals, but
those are not nilsquare. The idea of synthetic differential geometry is to use a ring object in an appro-
priate category. The formulation of what we want from that ring object to make it a useful starting
point for synthetic differential geometry was given by Kock and Lavwere with the following axiom:

Axiom 1
There is a non-zero ring 𝑅 that can be exponentiated by its subobject of
nilsquare elements 𝐷 and the map

𝜒:
𝑅 × 𝑅 𝑅u�

(𝑎, 𝑏) (𝑑 ↦ 𝑎 + 𝑏 ⋅ 𝑑)
(2.3)

is an isomorphism.

The exponential object 𝑅u� is defined by the property that for every other object 𝐴, there is a natural
bijection

(2.4) 𝜆 ∶ 𝐶𝐶𝐶(𝐴 × 𝐷, 𝑅) ≅ 𝐶𝐶𝐶(𝐴, 𝑅u�) ,

called currying. The exponential object is a kind of internal version of the set 𝐶𝐶𝐶(𝐷, 𝑅) of morphisms
from 𝐷 to 𝑅. For instance, this set is equal to the set of global elements of the exponenial object:
𝐶𝐶𝐶(1, 𝑅u�) = 𝐶𝐶𝐶(1 × 𝐷, 𝑅). Also, in the familiar category 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡, the set of functions fulfills the universal
property of the exponential object. On all accounts, regarding the exponential object as such an ‘object
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2 The Axiomatisation of Synthetic Differential Geometry

of morphisms’ makes it easier to talk about its elements and lets us write down a map into it like we
did in the axiom. It might nevertheless allow the axiom to make sense in a more general scope to define
the map 𝜒 explicitly as

(2.5) 𝜒 = 𝜆(𝛼 ∘ (𝜋1, 𝜇 ∘ (𝜋2, 𝜄u� ∘ 𝜋3)) .

In the above discussed symbolic notation of generalized elements, this reads as taking 𝐴 = 𝑅 × 𝑅 and
applying 𝜆 to (𝑎, 𝑏, 𝑑) ↦ 𝑎 + 𝑏 ⋅ 𝑑. We keep this a bit more precise definition in mind, but proceed with
the notation as in 2.3 and remember what it stands for.

The isomorphism 𝜒 from Axiom 1 read backwards says that for every map 𝑔 ∶ 𝐷 ⟶ 𝑅, there exist
unique 𝑎, 𝑏 ∈ 𝑅 with 𝑔 = 𝑑 ↦ 𝑎 + 𝑏 ⋅ 𝑑. We use this to define the first derivative of a function:

Definition 2. For a function 𝑓 ∶ 𝑅 ⟶ 𝑅 and 𝑐 ∈ 𝑅, regard 𝑔 ∶ 𝐷 ⟶ 𝑅 with 𝑔(𝑑) = 𝑓 (𝑐 + 𝑑). Use axiom
1 to write 𝑔 as 𝑔(𝑑) = 𝑔(0) + 𝑏 ⋅ 𝑑 = 𝑓 (𝑐) + 𝑏 ⋅ 𝑑. Define 𝑓 ′(𝑐) = 𝑏.

2.3 Logical consequences

The reader might immediately notice that there were no conditions for 𝑓 that make sure that it is dif-
ferentiable beforehand: All functions are differentiable. As this clearly is not the case in ‘usual’ math-
ematics, the category 𝐶𝐶𝐶 must have some properties that make it quite different from the categories of
sets or of topological spaces. To be more precise with what we mean by ‘usual’ mathematics, we can
think of everything that is built upon the ZFC axiom scheme or some extension of it. Here, functions
between sets 𝐴 and 𝐵 are certain subsets of the set of pairs 𝐴 × 𝐵. These ZFC-sets and functions form
the category 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡.

A very drastic hint that we have to abandon some properties of the classical mathematical world is the
following statement:

Theorem 3. Axiom 1 is inconsistent with classical logic: For a set-ring 𝑅, Axiom 1 implies 𝑅 = 0, which it also
explicitly prohibits.

Proof: Define a function 𝑐0 ∶ 𝐷 ⟶ 𝑅 as

𝑐0(𝑑) =
⎧{
⎨{⎩

0 if 𝑑 = 0

1 if 𝑑 ≠ 0 .
(2.6)
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Axiom 1 yields a ring element 𝑏 such that

𝑐0(𝑑) = 𝑐0(0) + 𝑏 · 𝑑 = 𝑏 · 𝑑 .(2.7)

Claim. 𝐷 = {0}.

Claim’s proof: Assume the existence of a 𝑑 ∈ 𝐷 with 𝑑 ≠ 0. Then 2.6 and 2.7 tell us that

1 = 𝑏 · 𝑑 .(2.8)

We multiply both sides by 𝑑 to get the equation

𝑑 = 1 · 𝑑 = (𝑏 · 𝑑) · 𝑑 = 𝑏 · 𝑑2 = 𝑏 · 0 = 0 .(2.9)

We conclude that there is no 𝑑 ∈ 𝐷 − {0}.

Since any 𝑏 ∈ 𝑅 satisfies 0 = 𝑐0(0) = 𝑏 ⋅ 0 = 0, the uniqueness condition from Axiom 1 allows 𝑅
to only have one element, i.e. 𝑅 = {0}, which contradicts the premise of Axiom 1.

Within a consistent theory which includes Axiom 1, a function like 𝑐0 in the proof of Theorem 3 should
not exist. One way to guarantee this could consist of defining a class of ‘nice’ functions and having
the set of morphisms 𝐷 ⟶ 𝑅 only consist of those. However, this would need an a priori notion of
differentiability and we wouldn’t get anything from Axiom 1 that we wouldn’t have without it. The
other way is - by working in a different category from 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡 - to change our logical mindset in such a way
that 𝑐0 is not even a well-defined function. If we do not know for every element of 𝐷 if it is either 0 or
not 0, then writing down a computation rule that relies on that knowledge doesn’t make sense.

3 Constructive Logic

3.1 Topoi different from 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡 have different internal logics

Usually, the logical rules that we use for deducing mathematical truths are fixed and we don’t need to
think about them. Logical propositions very much behave like sets, in the sense that given a set 𝑈 of
considered states and a predicate 𝑃 on those states, we define 𝑈u� ∶= {𝑥 ∈ 𝑈 ∣ 𝑃(𝑥)}. Then for 𝑥 ∈ 𝑈 we
can express the proposition 𝑃(𝑥) as the set-theoretic statement 𝑥 ∈ 𝑈u�. We therefore identify 𝑃 with the

13



3 Constructive Logic

set 𝑈u�. With this identification, logical connectives correspond to set operations. For example, logical
conjunction is intersection

(3.1) {𝑥 ∈ 𝑈 ∣ 𝑃(𝑥) ∧ 𝑄(𝑥)} = 𝑈u�∧u� = 𝑈u� ∩ 𝑈u� = {𝑥 ∈ 𝑈 ∣ 𝑥 ∈ 𝑈u� ∧ 𝑥 ∈ 𝑈u�} ,

forming a negation is taking the complement

(3.2) {𝑥 ∈ 𝑈 ∣ ¬𝑃(𝑥)} = 𝑈¬u� = 𝑈 − 𝑈u� = {𝑥 ∈ 𝑈 ∣ 𝑥 ∉ 𝑈u�}

and so on. Those set operations are limits and colimits in the category 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡, or more specifically in
its subcategory of subsets of 𝑈. This inspires the idea to explore what happens if we do the same
operations in a different category. Generally, it is established that this works well in what are called
Heyting categories. The result is a ‘constructive’ or ‘intuitionistic’ logic, a generalization of classical
logic. A great class of Heyting categories are the below-defined topoi. But for an easy example, take a
topological space 𝑉 (for example ℝ) and let the predicates be the open subsets of 𝑉 (e.g. (0, ∞) = ℝu�>0).
Then logical conjunction works just in the same way as for sets, but the complement of an open set
needn’t be open itself (ℝ − (0, ∞) = (∞, 0] is not open). What we need to take as the negation of 𝑃
instead is the interior of its complement:

(3.3) 𝑉¬u� = int(𝑉 − 𝑉u�) = ⋃
u�∩u�u�=∅

𝐴 .

This immediately leads to the observation that the logical disjunction of a predicate and its negation is
not necessarily always true: 𝑉u� ∪𝑉¬u� might miss some elements on the boundary of 𝑉u�. As a concrete
example take 𝑉 = ℝ, 𝑉u� = (0, ∞) (therefore 𝑃 is ‘being greater than zero’). Here, ℝ − 𝑉u� = (∞, 0] is
not open. The negation is rather 𝑉¬u� = (∞, 0). Thus, 𝑉u� ∪ 𝑉¬u� = ℝ − 0 is not all of ℝ.

This example of topological spaces is rather closely related to the category of sets, since 𝑇𝑜𝑝𝑇𝑜𝑝𝑇𝑜𝑝 is a concrete
category where objects are sets with an additional structure and can be described in terms of their
elements. A Heyting category has its internal logic where each object is a proposition, independently
of its generalized (or otherwise understood) elements. Here, the logical operations of propositional
calculus correspond to categorical constructions as presented in table 1.

14



3.2 The law of excluded middle

category internal logic

product × ∧ and
coproduct ⊗ ∨ or

terminal object 1 ⊤ True
initial object ∅ ⊥ False

exponential object 𝐴u� 𝐵 ⇒ 𝐴 implication
exponetial of ∅ ∅u� ¬𝐴 negation

Table 1

3.2 The law of excluded middle

This circumstance that 𝑉u� ∪ 𝑉¬u� = 𝑉 does in general not hold is the most central peculiarity of con-
structive logic: the missing of the law of excluded middle. While in classical logic, for any proposition
𝑃, the proposition 𝑃∨¬𝑃 is true, constructive logic relinquishes this inference. This does not mean that
constructive logicians claim or assume that there is some proposition that is neither true nor false. In
the ℝ-example above, negation of 𝑉u� ∪ 𝑉¬u� is the empty interior of a single point. Having a concrete
example of something being neither true nor false would even be inconsistent:

In classical and constructive logic alike, negation is defined as implication of falsehood:

¬𝑃 ∶≡ 𝑃 ⇒ ⊥ .(3.4)

If we had ¬(𝑃 ∨ ¬𝑃), for some 𝑃, we could infer ⊥ in the following way:

(¬(𝑃 ∨ ¬𝑃)) ⇒ (¬𝑃 ∧ ¬¬𝑃) 3.4≡ (¬𝑃 ∧ (¬𝑃 ⇒ ⊥))
modus ponens

⇒ ⊥ .(3.5)

Instead, when we do constructive mathematics we merely don’t see (𝑃 ∨ ¬𝑃) as a legitimate part of a
proof.

Note that the ≡ sign in 3.4 and 3.5 is an equal sign that we use if we talk about logical terms to the end
that it doesn’t get confused with an equality that might occur within a term.
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3 Constructive Logic

3.3 Constructive proofs

A popular example where such an inconstructive proof is used is the following theorem from arith-
metics:

Theorem 4. There is a pair of irrational numbers 𝑎 and 𝑏 such that 𝑎u� is rational.

An easy classical proof would be:

Classical Proof: Since at least 400 B.C. it is a well known (and by the way also constructively proven) fact

that the square root of 2 is irrational. Use the law of excluded middle on the proposition ‘√2
√2

is rational’ and its negation ‘√2
√2

is irrational’ to split the proof into two cases:

Case ‘√2
√2

is rational’: Take 𝑎 = √2, 𝑏 = √2.

Case ‘√2
√2

is irrational’: Take 𝑎 = √2
√2

, 𝑏 = √2. Therewith

𝑎u� = (√2
√2

)√2 = √2
√2⋅√2

= √2
2

= 2 ∈ ℚ .(3.6)

We have proven the theorem, but we still don’t know a single example of two such numbers that it
predicts. Some people deem this unsatisfying and demand a concrete example for an existence proof.

Considering this example, it is possible, but a lot harder, to prove that √2
√2

is irrational (refer to the

Gelfond–Schneider theorem) and therefore have 𝑎 = √2
√2

, 𝑏 = √2 witnessing the theorem. To demonstrate

that we can easily proof theorem 4, instead of the quite complicated number √2
√2

, take the binary
logarithm of 3.

Lemma 5. log2 3 is irrational.

Proof: Assume log2 3 ∈ ℚ. That means there are integers 𝑚, 𝑛 with 𝑛 > 0 and

log2 3 =
𝑚
𝑛 .

16



Exponentiating the number 2 by each side yields

3 = 2
u�
u� .

Taking the 𝑛u�ℎ power of both sides,
3u� = 2u� ,

makes it clear that
𝑚 = 0, 𝑛 = 0

is the only integer solution, which is ruled out by 𝑛 > 0. Therefore the assumption log2 3 ∈ ℚ
leads to a contradiction.

Note that using a proof by contradiction is problematic in constructive mathematics if it is used to
show a positive statement, since double negation elimination (¬¬𝑃 ⇒ 𝑃) is logically equivalent to
𝑃 ∨ ¬𝑃. Because of this, starting with ”Assume ¬𝑃” and deriving a contradiction from this is not a
constructively valid proof of 𝑃. However, deriving a contradiction is exactly what we should do for
proving a negation like log2 3 ∉ ℚ ≡ ¬(log2 3 ∈ ℚ) ≡ ((log2 3 ∈ ℚ) ⇒ ⊥).

Lemma 5 facilitates a short proof of Theorem 4:

Constructive proof of ∃𝑎, 𝑏 ∈ ℝ−ℚ ∶ 𝑎u� ∈ ℚ:

Take 𝑎 = √2, 𝑏 = log2 3.

𝑎u� = √2
log2 3

= 2log2 3 = 3 ∈ ℚ(3.7)

4 An Algebraic Model based on the Affine Line

4.1 The plan

In this section, we construct the presheaf topos of a class of algebras and observe how Axiom 1 is
incorporated inside that topos, following [Kock, 2010, Appx. 9.2]. By ‘ring’ we mean a commutative
ring with 1, and ring morphisms are required to send the 1 of the domain to the codomain’s. The recipe
consists of the following steps:

17



4 An Algebraic Model based on the Affine Line

• Understand the category 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔 with its tensor product and polynomial rings.

• In 𝔸𝑆u�𝔸𝑆u�𝔸𝑆u� = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�, regard the affine line 𝔸 = 𝑘[𝑋]u�u�. It is a ring object.

• Show that 𝔸 is finitely exponentiating: For an algebra 𝑊 of vector space dimension 𝑛, 𝔸u� = 𝔸u�.

• Via Yoneda embedding, interpret these notions in the presheaf topos of 𝔸𝑆u�𝔸𝑆u�𝔸𝑆u�.

• Take 𝑊 = 𝑘[𝑋]/(𝑋2) to get the nilsquare infinitesimals from Axiom 1.

4.2 Algebras and their tensor product

For a ring 𝑘, a 𝑘-algebra is a ring under 𝑘. That is a ring 𝐴 together with a ring homomorphism 𝑖u� ∶ 𝑘 →
𝐴; this structure morphism is most often omitted in notation. With this definition, a homomorphism 𝑓
of algebras 𝐴 and 𝐵 is a ring homomorphism such that the following diagram commutes:

𝑘

𝐴 𝐵

u� u�

u�u�

𝑓

(4.1)

We denote the category of 𝑘-algebras by 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔. This category has finite products per tuples
with component-wise multiplication and addition, as well as finite coproducts per tensor product
⊗ of algebras. Since in general (see [MacLane, 1998, Thm. 1 in ch. V.4]), the con-
travariant Hom-functor sends colimits to limits , the tensor product has the property that
𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔(𝐴 ⊗ 𝐵, 𝑋) natural≅

in u�,u�,u�
𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔(𝐴, 𝑋) × 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔(𝐵, 𝑋), and an element 𝑥 of 𝐴 ⊗ 𝐵 can generally be written

in the form 𝑥 = ∑u�
u�=1 𝑎u� ⊗ 𝑏u�. The coproduct injections are

𝜄u� ∶ 𝐴 𝐴 ⊗ 𝐵
𝑎 𝑎 ⊗ 1 and 𝜄u� ∶ 𝐴 𝐴 ⊗ 𝐵

𝑏 1 ⊗ 𝑏 .(4.2)
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4.3 A nice property of polynomial rings

If two maps of 𝑘-algebras 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐷 are given, then there is a canonical map 𝑓 ⊗ 𝑔 ∶

𝐴 ⊗ 𝐵 → 𝐶 ⊗ 𝐷 due to the coproduct property of 𝐴 ⊗ 𝐵: 𝐴

𝐶

𝐵

𝐷

𝐴 ⊗ 𝐵

𝐶 ⊗ 𝐷

𝜄u� 𝜄 u�

𝜄u� 𝜄 u�

𝑓 ⊗ 𝑔

𝑓 𝑔

Consequently,

𝑓 ⊗ 𝑔(𝑎 ⊗ 𝑏) = 𝑓 ⊗ 𝑔((𝑎 ⊗ 1) ⋅ (1 ⊗ 𝑏))

= 𝑓 ⊗ 𝑔(𝜄u�(𝑎)) ⋅ 𝑓 ⊗ 𝑔(𝜄u�(𝑏)) = 𝜄u�(𝑓 (𝑎)) ⋅ 𝜄u�(𝑔(𝑏))

= (𝑓 (𝑎) ⊗ 1) ⋅ (1 ⊗ 𝑔(𝑏)) = 𝑓 (𝑎) ⊗ 𝑔(𝑏) .

(4.3)

4.3 A nice property of polynomial rings

The algebra 𝑘[𝑋], the polynomial ring over 𝑘 in one variable, has the following universal mapping
property: for an algebra 𝐴, any map 𝑓 ∶ 𝑘[𝑋] → 𝐴 is uniquely determined by 𝑓 (𝑋) ∈ 𝐴, and on the
other hand, every 𝑎 ∈ 𝐴 gives rise to a different map 𝑒𝑣u� ∶ 𝑘[𝑋] → 𝐴. Thus, we can identify elements
of 𝐴 with maps from 𝑘[𝑋] into 𝐴, and 𝑘[𝑋] is called the free 𝑘-algebra in one variable. Further, the
polynomial ring of 𝑛 variables 𝑘[𝑆1, … , 𝑆u�] is free in 𝑛 variables and is isomorphic to the 𝑛-fold tensor
product of 𝑘[𝑋].

For what follows, we fix a 𝑘-algebra 𝑊 which is finite-dimensional as a vector space over 𝑘 and we
choose a vector space basis ℬ = (𝒷1, 𝒷2, … , 𝒷u�) of 𝑊.

Lemma 6. Any element 𝑥 of 𝐴 ⊗ 𝑊 can be written in the form 𝑥 = ∑u�
u�=1 𝑎u� ⊗ 𝒷𝒾 for some 𝑎1, … , 𝑎u� ∈ 𝐴.

Proof: Let 𝑥 = ∑u�
u�=1 𝑐u� ⊗ 𝑤u� for 𝑐u� ∈ 𝐴, 𝑤u� ∈ 𝑊. Write each 𝑤u� as a 𝑘-linear sum of the basis vectors to get

𝑥 =
u�

∑
u�=1

𝑐u� ⊗ ⎛⎜
⎝

u�
∑
u�=1

𝜆𝑗𝑖 ⋅ 𝒷𝒾⎞⎟
⎠

=
u�

∑
u�=1

u�
∑
u�=1

𝑐u� ⊗ (𝜆𝑗𝑖 ⋅ 𝒷𝒾) =
u�

∑
u�=1

⎛⎜⎜
⎝

u�
∑
u�=1

𝜆𝑗𝑖 ⋅ 𝑐u�
⎞⎟⎟
⎠

⊗ 𝒷𝒾 .(4.4)

Take 𝑎u� = ∑u�
u�=1 𝜆𝑗𝑖 ⋅ 𝑐u� .

Corresponding to the basis ℬ , we define the map ℬ̃ ∶
𝑘[𝑋] 𝑘[𝑆1, … 𝑆u�] ⊗ 𝑊

𝑋 ∑u�
u�=1 𝑆u� ⊗ 𝒷𝒾

.
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4 An Algebraic Model based on the Affine Line

Lemma 7. Let 𝐹 ∶ 𝑘[𝑋] → 𝐴 ⊗ 𝑊 be an arbitrary map of algebras, determined by 𝐹(𝑋) = ∑u�
u�=1 𝑎u� ⊗ 𝒷𝒾 . Then

there is a unique 𝑓 ∶ 𝑘[𝑆1, … , 𝑆u�] → 𝐴 which makes the diagram

𝑘[𝑋]

𝑘[𝑆1, … , 𝑆u�] ⊗ 𝑊

𝐴 ⊗ 𝑊𝐹

ℬ̃
𝑓 ⊗ 1u�

(4.5)

commute. This 𝑓 is evaluation at

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎1
𝑎2
⋮

𝑎u�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, i.e. in a polynomial 𝑃, the map 𝑓 replaces 𝑆u� with the 𝑖u�ℎ component of

𝐹(𝑋) with respect to the basis ℬ . Thus we have a bijection

(4.6) 𝑒ℬ ∶ 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔(𝑘[𝑋], 𝐴 ⊗ 𝑊) ∼−→ 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔(𝑘[𝑆1, … , 𝑆u�], 𝐴) .

It is natural in 𝐴.

Proof: The fact that 𝑘[𝑆1, … , 𝑆u�] is the free 𝑘-algebra in 𝑛 variables means that the evaluation 𝑓 is indeed
a 𝑘-algebra homomorphism. To check commutativity of diagram 4.5, we calculate

((𝑓 ⊗ 1u�) ∘ ℬ̃)(𝑋) = 𝑓 ⊗ 1u�(
u�

∑
u�=1

𝑆u� ⊗ 𝒷𝒾) =
u�

∑
u�=1

𝑓 (𝑆u�) ⊗ 𝒷𝒾

=
u�

∑
u�=1

𝑎u� ⊗ 𝒷𝒾 = 𝐹(𝑋) ,
(4.7)

which also makes the uniqueness apparent. For naturality, we have to check that for an arbitrary
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4.4 Opposites of algebras: affine schemes

map 𝛼 ∶ 𝐴 → 𝐵, the outer triangle of the following diagram commutes:

𝑘[𝑋]𝑘[𝑆1, … , 𝑆u�] ⊗ 𝑊

𝐴 ⊗ 𝑊

𝐵 ⊗ 𝑊

𝐹
ℬ̃

𝑃 ⊗ 𝑤 ↦ 𝑃(
u�1

⋮
u�u�

) ⊗ 𝑤

𝛼 ⊗ 1u�(𝛼 ⊗
1
u� ) ∘ 𝐹

𝑃 ⊗ 𝑤 ↦ 𝑃( u�(u�1)
⋮u�(u�u�) ) ⊗ 𝑤

.(4.8)

This will be sufficient since those pure elements 𝑃 ⊗ 𝑤 generate the algebra 𝑘[𝑆1, … , 𝑆u�] ⊗ 𝑊. It
indeed commutes, since the algebra homomorphism 𝛼 respects both addition and multiplication
and hence can be pulled outside of the polynomial 𝑃.

4.4 Opposites of algebras: affine schemes

We consider the opposite category 𝔸𝑆u�𝔸𝑆u�𝔸𝑆u� = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�. It is the category of affine schemes over 𝑘 which
plays an important role in algebraic geometry. The scheme corresponding to the polynomial ring in
one variable is called the affine line 𝔸1 or simply 𝔸. We show that it indeed satisfies Axiom 1. Limits
become colimits - and vice versa - if we switch to the opposite category. An overview of corresponding
constructions is given in table 2.

𝑘-algebras 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔 𝔸𝑆u�𝔸𝑆u�𝔸𝑆u� aff. schemes over 𝑘

some object 𝐴 𝐴 written with a bar
coproduct ⊗ × product

final object 0 ∅ initial object
initial object 𝑘 1 final object

pol. ring in 1 variable 𝑘[𝑋] 𝔸 affine line
its 𝑛-fold coproduct 𝑘[𝑆1, … , 𝑆u�] 𝔸u� its 𝑛-fold product

Table 2
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4 An Algebraic Model based on the Affine Line

The affine line becomes a ring object by defining the arithmetic operations of a coring in the opposite
category:

𝛼:
𝑘[𝑋] 𝑘[𝐴, 𝐵]

𝑋 𝐴 + 𝐵
,(4.9)

𝜇:
𝑘[𝑋] 𝑘[𝐴, 𝐵]

𝑋 𝐴𝐵
,(4.10)

0𝔸(𝑋) = 0u�, 𝜈(𝑋) = −𝑋, 1𝔸(𝑋) = 1u� .(4.11)

Recognising that this indeed defines a coring object is straightforward; exemplarily, we check that the
distributivity as in diagram 1.3 holds:

𝑘[𝑋, 𝑌, 𝑍] 𝑘[𝐴, 𝐵]

𝑘[𝑃, 𝑄, 𝑅, 𝑆] 𝑘[𝐶, 𝐷] 𝑘[𝑇]

𝑋 ↤ 𝐴
𝑌 + 𝑍 ↤ 𝐵

𝑃
↦

𝑋
𝑄

↦
𝑌

𝑅
↦

𝑋
𝑆

↦
𝑍

𝑃𝑄 ↤ 𝐶

𝑅𝑆 ↤ 𝐷 𝐶 + 𝐷 ↤ 𝑇

𝑇
↦

𝐴
𝐵

(4.12)

When going first up and then left in diagram 4.12, 𝑇 is mapped to 𝑋(𝑌 + 𝑍), while the left-left-up path
maps 𝑇 to 𝑋𝑌 + 𝑋𝑍. These are of course equal due to distributivity in 𝑘[𝑋, 𝑌, 𝑍].

Now we conclude that the affine line is exponentiating for any 𝑊 as above: The diagram opposite to
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4.4 Opposites of algebras: affine schemes

4.5 is

𝔸

𝔸u� × 𝑊

𝐴 × 𝑊𝐹

ℬ̃
𝑓 × 1u�

,(4.13)

and we observe that taking the statement opposite to Lemma 7 mutates 4.6 into natural bijection 𝑒ℬ ∶
𝔸𝑆u�𝔸𝑆u�𝔸𝑆u�(𝐴 × 𝑊, 𝔸) ∼−→ 𝔸𝑆u�𝔸𝑆u�𝔸𝑆u�(𝐴, 𝔸u�). This means that 𝔸u� fulfills the definition of the exponential object 2.4;
we write 𝔸u� ≅ℬ 𝔸u� , with the subscript ℬ to remind us that the exact identification depends on the
choice of vector space basis of 𝑊. If we interpret the exponential object as the set of morphisms from
𝑊 to 𝔸, the identification is concretely obtained by currying the map ℬ̃ :

ℬ̃1:
𝔸u� 𝔸𝑆u�𝔸𝑆u�𝔸𝑆u�(𝑊, 𝔸)
𝑥 ℬ̃(𝑥, −)

∼
.(4.14)

For our logical and geometrical framework, we want to have the rich structure of a topos. An easy
way to get a topos from a category is taking the topos of presheaves on it. This is works well if the
underlying category is equivalent to a small. This is the case for category 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u� of opposites of finitely
presented 𝑘-algebras, to which we restrict ourselves from now on. The presheaf topos of 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u� is

𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡(u�-u�u�u�u�-u�u�u�u�-u�u�u�u�u�
u� u�)u�u�

= 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡u�-u�u�u�u�-u�u�u�u�-u�u�u�u� u�. There is the Yoneda embedding 𝑦:
𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u� 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡(u�-u�u�u�u�-u�u�u�u�-u�u�u�u�u�
u� u�)u�u�

𝐴 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�
u� u�(−, 𝐴) which is

not only full and faithful, but also preserves existing limits and exponential objects. Those include the
property of being a ring object. From the general

𝑦(𝐴) = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�
u� u�(−, 𝐴) = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u� u�(𝐴, −) ,(4.15)

we see that in particular

𝑦(1) = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u� u�(𝑘, −) = (𝐴 ↦ {𝑖u�})(4.16)

is the functor that maps every object to the one-point set containing 𝑖u� ∶ 𝑘 → 𝐴. Thus, it is indeed the
terminal object in our presheaf category: 𝑦(1) = 1. We also take a look at 𝑦(𝔸) = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u� u�(𝑘[𝑋], −). At

23



4 An Algebraic Model based on the Affine Line

an algebra 𝐴, it is the set 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u� u�(𝑘[𝑋], 𝐴) = {𝑒𝑣u� ∣ 𝑎 ∈ 𝐴}, which is identical to 𝐴 itself. Applying the
functor 𝑦(𝔸) to a homomorphism 𝑓 ∶ 𝐴 → 𝐵 yields the map 𝑒𝑣u� ↦ 𝑒𝑣u� (u�).

The next step is to understand what the presheaf belonging to the map ℬ̃1 does. Since the Yoneda
embedding preserves limits and exponential objects, we can read the map as

(4.17) 𝑦(ℬ̃1) ∶ 𝑦(𝔸)u� → 𝑦(𝔸)u�(u�) .

We would to know what this map does to the elements of 𝑦(𝔸)u�. Instead of having to regard
all generalized elements 𝑁𝑎𝑡(𝜙, 𝑦(𝔸)u�), we will still get the necessary information by only look-
ing at the cases where 𝜙 is a representable presheaf. This means 𝜙 is of the form 𝑦(𝐴) for some
𝐴 ∈ 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�. That makes things a lot easier, since Yoneda’s lemma tells us that 𝑁𝑎𝑡(𝑦(𝐴), 𝑦(𝔸)u�) =
𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�(𝐴, 𝔸u�). By definition of the opposite category, thisset is equal to 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u� u�(𝑘[𝑆1, … , 𝑆u�], 𝐴). Its

elements are the evaluation maps in 𝑛 variables at
⎛⎜⎜⎜⎜⎜
⎝

𝑎1
⋮

𝑎u�

⎞⎟⎟⎟⎟⎟
⎠

where the 𝑎u� are from 𝐴. Applying 𝑦(ℬ̃1)

to such a generalized element means applying its component at 𝐴. Therefore, the result is a gen-
eralized element of 𝑦(𝔸)u�(u�) at stage 𝐴. Using Yoneda’s lemma again, this means it lies in the set
𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�(𝐴, 𝔸)u�-u�u�u�u�-u�u�u�u�-u�u�u�u�u�
u� u�(u�,u�) = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�(𝐴, 𝔸u�). This can be rewritten with the currying bijection 𝜆 to
𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�(𝐴 × 𝑊, 𝔸) = 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u� u�(𝑘[𝑋], 𝐴 ⊗ 𝑊). Chasing all the steps back through lemma 7, we can see

that 𝑦(ℬ̃1) at 𝐴 is (the inverse of) the isomorphism 𝑒ℬ in 4.6. It sends the 𝑛-variable evaluation at
⎛⎜⎜⎜⎜⎜
⎝

𝑎1
⋮

𝑎u�

⎞⎟⎟⎟⎟⎟
⎠

that would be 𝑓 in lemma 7 to the one-variable evaluation 𝑋 ↦ ∑u�
u�=1 𝑎u� ⊗ 𝒷𝒾 that would be 𝐹. So what is

this map 𝑋 ↦ ∑u�
u�=1 𝑎u� ⊗ 𝒷𝒾 when concretely written as a generalized element of 𝑦(𝔸)u�(u�) at stage 𝑦(𝐴) ?

Since we are in 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡, the exponential object 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�
u� u�(𝐴, 𝔸)u�-u�u�u�u�-u�u�u�u�-u�u�u�u�u�

u� u�(u�,u�) is actually the set of functions from
𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�(𝐴, 𝑊) to 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�
u� u�(𝐴, 𝔸). Elements of 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�(𝐴, 𝑊) are generalized elements of 𝑊 at stage 𝑦(𝐴),
and they are homomorphisms from 𝑊 to 𝐴. Given such a homomorphism 𝑑, we apply it to the tensor
product of 𝐴 with 𝑊 to give us the retraction map

𝑑∗:
𝐴 ⊗ 𝑊 𝐴
𝑎 ⊗ 𝑤 𝑎 ⋅ 𝑑(𝑤)

,(4.18)

similar to the one for dual spaces in linear algebra. We postcompose 𝑑∗ with the map 𝑋 ↦ ∑u�
u�=1 𝑎u� ⊗ 𝒷𝒾

to get the map 𝑋 ↦ ∑u�
u�=1 𝑎u� ⋅ 𝑑(𝒷𝒾), which an element of 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�

u� u�(𝐴, 𝔸), i.e. generalized element of 𝑦(𝔸)
at stage 𝑦(𝐴). Taken all together and denoting generalized elements by element symbols as discussed
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4.4 Opposites of algebras: affine schemes

in section 1, we started with an evaluation map defined by
⎛⎜⎜⎜⎜⎜
⎝

𝑎1
⋮

𝑎u�

⎞⎟⎟⎟⎟⎟
⎠

and applied the bijection 𝑦(ℬ̃1) to it

to get a map that sends 𝑑 ∈ 𝑊 to the evaluation at ∑u�
u�=1 𝑎u� ⋅ 𝑑(𝒷𝒾). Written out, this means the bijection

is

𝑦(ℬ̃1):
𝑦(𝔸)u� 𝑦(𝔸)u�(u�)

⎛⎜⎜⎜⎜⎜
⎝

𝑎1
⋮

𝑎u�

⎞⎟⎟⎟⎟⎟
⎠

𝑑 ↦ ∑u�
u�=1 𝑥u� ⋅ 𝑑(𝒷𝒾)

∼
.(4.19)

The fact that this map is a bijection means that any element of 𝑦(𝔸)u�(u�) is of this form. We express this
insight in the following theorem:

Theorem 8. For any map 𝑓 ∶ 𝑦(𝑊) → 𝑦(𝔸), there are unique 𝑎1, … , 𝑎u� ∈ 𝑦(𝔸), such that for all 𝑑 ∈ 𝑊 the
following equation holds:

𝑓 (𝑑) =
u�

∑
u�=1

𝑎u� ⋅ 𝑑(𝒷𝒾) .(4.20)

We observe a resemblance with the pattern of Axiom 1. The affine line 𝑦(𝔸) will actually work out as
the line object. Above, we already showed in which way it is a ring object.

To calculate 𝐷 ∶= {𝑑 ∈ 𝑦(𝔸) ∣ 𝑑2 = 0}, we write it as an equalizer:

𝐷 𝑅 𝑅
0

−2

eq
.(4.21)

Since existing equalizers are preserved by 𝑦(−), we can calculate it in 𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔𝑘-𝐴𝑙𝑔u�u�
u� u�:

𝐴 𝔸 𝔸
0

−2

eq
.(4.22)

We can handle this in the opposite category, where the maps 0 and −2 correspond to 𝑋 ↦ 0 and 𝑋 ↦ 𝑋2,
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5 Grothendieck Topoi

respectively. Taking their coequalizer produces

𝑘[𝑋]/(𝑋2) 𝑘[𝑋] 𝑘[𝑋]
0 ↤ 𝑋

𝑋2 ↤ 𝑋
𝑋 ↤ 𝑋

.(4.23)

Consequently, we set 𝑊 = 𝑘[𝑋]/(𝑋2), such that 𝐷 becomes 𝑦(𝑊), and choose the vector space basis
ℬ = (1, 𝑋) of 𝑊. Putting this into Theorem 8 yields

Corollary 9. Any map 𝑓 ∶ 𝐷 → 𝑅 can be uniquely written in the form

𝑓 ∶ 𝑑 ↦ 𝑟1 ⋅ 1 + 𝑟2 ⋅ 𝑑(4.24)

for some 𝑟1, 𝑟2 ∈ 𝑅.

Corollary 10. The topos 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡(u�-u�u�u�u�-u�u�u�u�-u�u�u�u�u�
u� u�)u�u�

with 𝑦(𝔸) as its line object satisfies Axiom 1 and therefore is a model for
synthetic differential geometry.

There are generalizations of Axiom 1 that lead to a richer theory with more sophisticated differen-
tials, which are obtained by factoring different ideals out of 𝑘[𝑋]. For example, it is possible to define
nilcube infinitesimals via 𝑘[𝑋]/(𝑋3); they can be used to calculate second derivatives. Furthermore,
algebras like 𝑘[𝑋, 𝑌]/(𝑋2, 𝑋𝑌, 𝑌2) that lead to infinitesimals that can express partial differentials in
two dimensional calculus, and so on. For more on those higher kinds of infinitesimals, refer to [Kock,
2006, I.3-6].

5 Grothendieck Topoi

This section is meant to give a quick definition of topoi, Grothendieck topologies and the way of ob-
taining the former from the latter. A very thorough but easy to read introduction is given in the first
chapters of [Mac Lane and Moerdijk, 1992]. The rough idea stems from the following consideration:

• For a topological space 𝑋, the category 𝑆ℎ(𝑋) of sheaves of sets on it carries a nice structure
which can give useful information about 𝑋 and is also interesting to look at by itself.

• Given a category 𝐶𝐶𝐶, the Yoneda embedding 𝑦:
𝐶𝐶𝐶 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡u�u�u�u�u�

𝐴 𝐶𝐶𝐶(−, 𝐴)
is useful in many

situations. It embeds 𝐶𝐶𝐶 into 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡u�u�u�u�u�, the category of contravariant set-valued functors, a.k.a.
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5.1 Sieves, sites and sheaves

presheaves, on 𝐶𝐶𝐶. It has a logical structure that inherits many of the tools from 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡, in the sense
that it has finite limits, is cartesian closed and has a subobject classifier. These properties make
it what is defined as a topos. This allows some problems that pose themselves in 𝐶𝐶𝐶 to be solved
in 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡u�u�u�u�u� making use of the constructions that a topos allows, and then to be carefully translated
back.

• For a more interesting structure than the very set-like one of 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡u�u�u�u�u�, we want to get the notion of
sheaves on 𝐶𝐶𝐶 by defining what covering families of an object in 𝐶𝐶𝐶 are. The unique amalgamation
criterion then tells us which functors actually are sheaves.

5.1 Sieves, sites and sheaves

Given an object 𝐴 in a category 𝐶𝐶𝐶, a sieve on 𝐴 is a subfunctor of 𝐶𝐶𝐶(−, 𝐴). For a sieve 𝑆 on 𝐵 and a
morphism 𝑓 ∶ 𝐴 → 𝐵, the limit of the diagram

𝑆

𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡(−, 𝐴)

𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡(−, 𝐵)
𝜄u�

∘𝑓

(5.1)

is the pullback sieve 𝑓 ∗𝑆 on 𝐴.

A Grothendieck topology 𝐽 on 𝐶𝐶𝐶 assigns to each object 𝐴 a set 𝐽(𝐴), the covering sieves of 𝐴, such that
the following conditions are satisfied:

Identity 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡(−, 𝐴) ∈ 𝐽(𝐴) .

Base change Pullbacks of covering sieves are covering.

Locality If 𝑆 ∈ 𝐽(𝐴) and 𝑇 is a sieve on 𝐴 such that all pullbacks of 𝑇 along morphisms in 𝑆 are
covering, then 𝑇 itself is covering.

It is often more practical to regard a sieve as a set of actual morphisms with common codomain. This
lets us express the above conditions for morphisms accoridng to [Mac Lane and Moerdijk, 1992, III.2,
Definition 2]:
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5 Grothendieck Topoi

Identity 1 ∈ 𝐽(𝐴) .

Base change For {𝐴u�
u�u�−→ 𝐴|𝑖 ∈ 𝐼} ∈ 𝐽(𝐴) and 𝑓 ∶ 𝐵 → 𝐴, the set of pullbacks {𝐴u� ×u� 𝐵 → 𝐵|𝑖 ∈ 𝐼} is in

𝐽(𝐵).

Locality Given a covering sieve {𝐴u�
u�u�−→ 𝐴|𝑖 ∈ 𝐼} on 𝐴 and for each 𝑖 ∈ 𝐼 a further one {𝐴u�u�

u�u�u�−→ 𝐴|𝑗 ∈ 𝐽u�}

on 𝐴u�, then the sieve of composites {𝐴u�u�
u�u�∘u�u�u�−−−→ 𝐴|𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽u�} covers 𝐴.

A category 𝐶𝐶𝐶 with a Grothendieck topology 𝐽 on it is called the site (𝐶𝐶𝐶, 𝐽).

A sheaf on a site (𝐶𝐶𝐶, 𝐽) is a functor 𝐹 ∈ 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡u�u�u�u�u� such that for each object 𝐴 of 𝐶𝐶𝐶 and each covering sieve
𝑆 ∈ 𝐽(𝐴), precomposition with the inclusion ∘𝜄u� ∶ 𝑁𝑎𝑡(𝐶𝐶𝐶(−, 𝐴), 𝐹) → 𝑁𝑎𝑡(𝑆, 𝐹) is a bijection

A site where for each object 𝐵 of 𝐶𝐶𝐶 the Hom-functor 𝐶𝐶𝐶(−, 𝐵) is a sheaf is called subcanonical. It is
equivalent to demand for each covering sieve 𝑆 ∈ 𝐽(𝐴) that ∘𝜄u� ∶ (𝑁𝑎𝑡(𝐶𝐶𝐶(−, 𝐴),𝐶𝐶𝐶(−, 𝐵)) = ) 𝐶𝐶𝐶(𝐴, 𝐵) →
𝑁𝑎𝑡(𝑆,𝐶𝐶𝐶(−, 𝐵)) is an isomorphism. If we interpret 𝑆 as a collection {𝑔u� ∣ 𝑖 ∈ 𝐼} of arrows with codomain
𝐴, then ∘𝜄u� maps 𝑓 to the collection {𝑓 ∘ 𝑔u� ∣ 𝑖 ∈ 𝐼}. It is injective if ∀𝑖 ∈ 𝐼 ∶ 𝑓1 ∘ 𝑔u� = 𝑓2 ∘ 𝑔u� implies 𝑓1 = 𝑓2.
Thus, we can say that the topology 𝐽(𝐴) is subcanonical if each {𝑔1, 𝑔2, 𝑔3, … } ∈ 𝐽(𝐴) is collectively
epimorphic.

5.2 The site of opens

Sheaves on a site are a generalization of sheaves on a topological space. To get familiar with the site
formalism, we reproduces those by regarding the site of opens of a topological space 𝑋: Open subsets
of 𝑋 are the objects, inclusions are the morphisms. Therefore, a sieve on an open set 𝑈 is a collection
𝑆 of open subsets of 𝑈 such that 𝑉 ∈ 𝑆 implies that also all open subsets of 𝑉 are in 𝑆. The set 𝑆(𝑉)
contains one element if 𝑉 belongs to the sieve and is empty otherwise.

Covering sieves on 𝑈 are those whose union is all of 𝑈. This indeed defines a topology: The identity
condition holds since the union of all open subsets of 𝑈 obviously is 𝑈. It is clear that base change holds,
as pullback of a collection of open sets along an inclusion 𝑉 ↪ 𝑈 is the collection of the intersections
of its members with 𝑉. Locality means that if ⋃u�∈u� 𝑉 = 𝑈 and ∀𝑉 ∈ 𝑆 ∶ (⋃u�∈u� 𝑊 ∩ 𝑉) = 𝑉, then
⋃u�∈u� 𝑊 = 𝑈 - which is also clearly the case.

When is a contravariant functor on this category of open sets a sheaf? For simplicity, we write |u� for
𝐹(𝜄u�u�) ∶ 𝐹(𝑉) → 𝐹(𝑊). Given a sieve 𝑆, elements of the set 𝑁𝑎𝑡(𝑆, 𝐹) of natural transformations from 𝑆
to 𝐹 are families of an 𝑥u� ∈ 𝐹(𝑉) for each 𝑉 ∈ 𝑆, such that for 𝑊 ⊆ 𝑉, it is 𝑥u� |u� = 𝑥u� . Thus, we call
these natural transformations consistent families. The map 𝜄u� ∶ 𝐹(𝑈) → 𝑁𝑎𝑡(𝑆, 𝐹) takes an 𝑥 ∈ 𝐹(𝑈)
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and sends it to the family (𝑥|u�)u�∈u�. Surjectivity of that map means that for each consistent family
(𝑥u�)u�∈u� there is some 𝑥 ∈ 𝐹(𝑈) with 𝑥u� = 𝑥|𝑉. Injectivity means that there is at most one. Therefore,
the notion of sheaf on the site of opens coincides with the topological one on 𝑋.

An important result is that for a site (𝐶𝐶𝐶, 𝐽), the category 𝑆ℎ(𝐶𝐶𝐶, 𝐽) of sheaves and natural transform-
ations between them is a topos. This is expounded by the verification of all the relevant properties
in [Mac Lane and Moerdijk, 1992, III.6/7].

6 𝒞∞-Rings as a Model

A branch of synthetic differential geometry that is particularly useful for doing differential geometry is
the theory of smooth infinitesimal analysis. We follow the chapters I, II and VI of [Moerdijk and Reyes,
1991] to define the Zariski topos on the ground of smooth algebras.

6.1 The category 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔

An ℝ-algebra 𝐴 has the characterizing property that polynomial maps 𝑃 ∶ ℝu� → ℝu�,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑟1
𝑟2
⋮

𝑟u�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑u�∈ℕu� 𝑃1u�𝑟
u�1
1 𝑟u�2

2 ⋯ 𝑟u�u�
u�

∑u�∈ℕu� 𝑃2u�𝑟
u�1
1 𝑟u�2

2 ⋯ 𝑟u�u�
u�

⋮
∑u�∈ℕu� 𝑃u�u�𝑟

u�1
1 𝑟u�2

2 ⋯ 𝑟u�u�
u�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

can be lifted to maps from 𝐴u� to 𝐴u�, simply by letting the symbols 𝑟u� be ele-

ments of 𝐴.

The real numbers notoriously have more structure than just being a ring that allows the definition of
polynomials. Continuous, differentiable and analytic functions come to mind. This is the idea behind
the introduction of 𝒞∞-rings: A 𝒞∞-ring 𝐴 is an ℝ-algebra 𝐴 with the additional requirement that any
smooth map 𝑓 ∶ ℝu� → ℝu� can be extended to a map (of the underlying sets) 𝐴(𝑓 ) ∶ 𝐴u� → 𝐴u� that is
compatible with the algebra structure.

The definition of 𝒞∞-rings can be expressed more precisely by the following description in terms of
the category 𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝 of cartesian spaces ℝu� and smooth maps between them: A 𝒞∞-ring is a functor
𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝 → 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡 which preserves finite products. Taking natural transformations as morphisms, we get a
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6 𝒞∞-Rings as a Model

category 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔. Given a functor 𝐴 ∶ 𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝 → 𝑆𝑒𝑡𝑆𝑒𝑡𝑆𝑒𝑡 which is a 𝒞∞-ring in the sense of this definition,
we get an algebra 𝐴(ℝ) which is a 𝒞∞-ring as in the preceding paragraph. We don’t distinguish them
in notation and write 𝐴 for both. The category 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔 has finite products, denoted by ×, and finite
coproducts, denoted by ⊗∞.

For a class of examples of 𝒞∞-rings, let 𝑋 be a smooth manifold. Then 𝒞∞(𝑋, −) =∶ 𝒞∞(𝑋) is the
functor that assigns to ℝu� the set of smooth functions 𝑋 → ℝu�. It is the covariant Hom-functor for
𝑋 on manifolds restricted to 𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝𝐶𝑎𝑟𝑡𝑆𝑝, which tells us that it indeed preserves limits since all covariant
Hom-functors do [MacLane, 1998, Thm. 1 in ch. V.4]. That especially means 𝒞∞(𝑋, ℝu�) = 𝒞∞(𝑋, ℝ)u�.
This is in accord with the fact from analysis that smoothness can be regarded componentwise.

The fundamental 𝒞∞-rings for our theory are 𝒞∞(ℝu�). They are the free 𝒞∞-rings in 𝑛 variables:

Lemma 11.
𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(𝒞∞(ℝu�), 𝐴) = {(𝑎1, … , 𝑎u�) | 𝑎u� ∈ 𝐴}

as sets.

Proof: If we look at it from the functor perspective where 𝒞∞(ℝu�) = 𝒞∞(ℝu�, −), Yoneda’s Lemma says
𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(𝒞∞(ℝu�, −), 𝐴)) = 𝐴(ℝu�). As 𝐴 preserves products, this equals 𝐴(ℝ)u� = 𝐴u�.

Viewed as algebras, the equality can be implemented by sending the projections 𝜋u� ∶ ℝu� → ℝ
to 𝑎u�. This defines a smooth homomorphism 𝒞∞(ℝu�) → 𝐴 via 𝑓 ↦ 𝐴(𝑓 )(𝑎1, … , 𝑎u�) in a unique
and surjective way.

In the case 𝑛 = 1 this means that a smooth homomorphism from 𝒞∞(ℝ) to 𝐴 is specified by the element
of 𝐴 that 1ℝ, the identity on ℝ, gets mapped to. We can also conclude that a smooth homomorphism
from 𝒞∞(ℝu�) to 𝒞∞(ℝu�) is determined by 𝑛 smooth functions ℝu� → ℝ that can be subsumed to just
a single smooth function ℝu� → ℝu�. The therewith apparent similarity of 𝒞∞(ℝ) with 𝑘[𝑋] in the
𝑘-algebraic model above will be extended in an analogous way, except that we will use a Grothendieck
topology instead of simply accepting all presheaves. But first we make sure that we have everything
we need for a line object.

A basic theorem from real analysis that will be useful is Hadamard’s lemma.

Lemma 12 (Hadamard’s Lemma). For any smooth function 𝑓 ∶ ℝ → ℝ, there exists another smooth function
𝑔 such that 𝑓 = 𝑓 (0) + 1ℝ ⋅ 𝑔.
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6.1 The category 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔

If we apply Hadamard’s Lemma 𝑛 times in a row, we get the 𝑛th order Taylor polynomial plus some
smooth function times 1u�

u� as remainder. For example, applying it twice yields 𝑓 = 𝑓 (0) + 1ℝ ⋅ 𝑓 ′(0) +
1

2
ℝ ⋅ ℎ.

The maps that make 𝒞∞(ℝ) a coring are the same as those for 𝑘[𝑋] but replacing 𝑋 by 1ℝ. Note that
‘taking the free object in 𝑛 variables’ is a functor which is left adjoint to the forgetful functor and as
such preserves colimits. The coproduct of sets is their union. This means that the free 𝒞∞-ring 𝒞∞(ℝ2)
in two variables is the same as 𝒞∞(ℝ) ⊗∞ 𝒞∞(ℝ), in parallel to 𝑘[𝐴, 𝐵]. Written out, the coring maps
are:

𝛼:
𝒞∞(ℝ) 𝒞∞(ℝ2)
1ℝ 𝜋1 + 𝜋2

,(6.1)

𝜇:
𝒞∞(ℝ) 𝒞∞(ℝ2)
1ℝ 𝜋1 ⋅ 𝜋2

,(6.2)

0(1ℝ) = 0ℝ, 𝜈(1ℝ) = −1ℝ, 1(1ℝ) = 1ℝ.(6.3)

The projection maps 𝜋u� stand for the 𝑖u�ℎ variable of a function or the 𝑖u�ℎ entry of an input vector; for

example, another way to write the coaddition would be 𝛼(𝑥 ↦ 𝑥) = ⎛⎜
⎝

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

↦ 𝑥 + 𝑦⎞⎟
⎠

.

This constitutes a coring structure on 𝒞∞(ℝ) in the very same way the analogue definitions on 𝑘[𝑋]
do.

An easy way of constructing new 𝒞∞-rings is factoring out ring-theoretic ideals:

Lemma 13. Given a 𝒞∞-ring 𝐴 and an ideal 𝐼 ≤ 𝐴, the quotient 𝐴/𝐼 is a 𝒞∞-ring, too.

Proof: For any smooth map 𝑓 ∶ ℝ → ℝ (let’s stick to the one-dimensional case here, 𝑓 ∶ ℝu� → ℝu� works
similar), we need to make sure that it preserves congruence modulo 𝐼. So for 𝑎 ∈ 𝐼, we must
show 𝐴(𝑓 )(𝑎) − 𝐴(𝑓 )(0) ∈ 𝐼. We apply 𝐴 to the equation 𝑓 (𝑥) = 𝑓 (0) + 𝑥 ⋅ 𝑔(𝑥) from Hadamard’s
Lemma and get 𝐴(𝑓 )(𝑎) = 𝐴(𝑓 )(0) + 𝑎 ⋅ 𝐴(𝑔)(𝑎), where the latter summand is in the ideal 𝐼.

A finitely generated 𝒞∞-ring is one of the form 𝒞∞(ℝu�)/𝐼.
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6 𝒞∞-Rings as a Model

There is an easy way to describe functions 𝜙 between two finitely generated 𝒞∞-rings 𝒞∞(ℝu�)/𝐼 and
𝒞∞(ℝu�)/𝐽. It is given by an equivalence class of maps 𝜑 ∶ ℝu� → ℝu� such that precomposition with
𝜑 maps 𝐼 into 𝐽 modulo each component of 𝜙 being in 𝐽. Another nice fact (cf. [Moerdijk and Reyes,
1991, after I.1.5]) is that factoring out ideals and tensoring are both colimits and therefore commute. In
particular,

𝒞∞(ℝu�)/𝐼 ⊗∞ 𝒞∞(ℝu�)/𝐽 = 𝒞∞(ℝu� × ℝu�)/(𝐼 ∘ 𝜋1 + 𝐽 ∘ 𝜋2) .(6.4)

6.2 Loci

Above, we introduced affine schemes - which we defined as duals of 𝑘-algebras - as geometric counter-
parts of algebraic objects. Later, we restricted ourselves to finitely presented ones. Here, we do both at
once. The object dual to a finitely generated 𝒞∞-ring can be regarded as a geometric space and is called
a locus. We write 𝕃 = 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔u�u�

u� u� for the category of loci. The dual of 𝒞∞(ℝ) is suggestively called 𝑅.

Inside 𝒞∞(ℝ), the functions 𝑓 which allow factoring out a quadratic part, in the sense that there is some
𝑔 ∈ 𝒞∞(ℝ) with 𝑓 (𝑥) = 𝑥2 ⋅ 𝑔(𝑥), form an ideal (12

ℝ). Factoring it out is a coequalizer.

𝒞∞(ℝ)/(12
ℝ) 𝒞∞(ℝ) 𝒞∞(ℝ)

0

1
2
ℝ ↤ 1ℝ

1ℝ ↤ 1ℝ
coeq .(6.5)

Therefore its dual is the infinitesimal disk locus 𝐷 = 𝒞∞(ℝ)/(12
ℝ).

Theorem 14. 𝑅u� ∼−→ 𝑅2

Proof: We have to show that for any locus 𝐿, there is a natural bijection between 𝕃(𝐿×𝐷, 𝑅) and 𝕃(𝐿, 𝑅2).
The locus 𝐿 is the dual of 𝒞∞(ℝu�)/𝐽 for some 𝑚 and 𝐽. Passing to the opposite category, the
bijection we have to establish must be between 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(𝒞∞(ℝ), 𝒞∞(ℝu�)/𝐽 ⊗∞ 𝒞∞(ℝ)/(12

ℝ))
and 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(𝒞∞(ℝ2), 𝒞∞(ℝu�)/𝐽). The first set is 𝒞∞(ℝu�)/𝐽 ⊗∞ 𝒞∞(ℝ)/(12

ℝ), since 𝒞∞(ℝ)
being free in one variable means it just picks one element, and can be simplified to 𝒞∞(ℝu� ×
ℝ)/(𝐽 ∘ 𝜋1 + (𝜋2

2)) as factoring and tensoring commute. The second is (𝒞∞(ℝu�)/𝐽)2, since a
map from 𝒞∞(ℝ2) picks two elements. We define two maps

𝒞∞(ℝu� × ℝ)/(𝐽 ∘ 𝜋1 + (𝜋2
2)) (𝒞∞(ℝu�)/𝐽)2𝑟

𝑠(6.6)
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6.2 Loci

and show that they are mutually inverse.

The first one is
𝑟 ∶ 𝜓 ↦ (𝜓(−, 0),

𝜕𝜓
𝜕𝜋2

(−, 0))

for 𝜓 = 𝜓(𝜋1, 𝜋2) ∶ ℝu� × ℝ → ℝ. The derived function u�u�
u�u�2

(−, 0) assigns to each point 𝑧 in ℝu�

the derivative at zero of 𝜓(𝑧, −) ∶ ℝ → ℝ. We have to make sure that this defines a function by
checking that the image of some 𝑗 ∘ 𝜋1 + 𝑓 ⋅ 𝜋2

2 ∈ 𝐽 ∘ 𝜋1 + (𝜋2
2) under 𝑟 is in 𝐽2. It is indeed:

𝑟(𝑗 ∘ 𝜋1 + 𝑓 ⋅ 𝜋2
2) = (𝑗 + 𝑓 (−, 0) ⋅ 02, 0 +

𝜕𝑓
𝜕𝜋2

(−, 0) ⋅ 02 + 𝑓 ⋅ 2 ⋅ 0) = (𝑗, 0) ∈ 𝐽2(6.7)

The second map is

𝑠 ∶ (𝑓 , 𝑔) ↦ 𝑓 ∘ 𝜋1 + 𝜋2 ⋅ 𝑔 ∘ 𝜋1 .(6.8)

We check that it defines a map by calculating that (𝑗1, 𝑗2) ∈ 𝐽2 is mapped into 𝐽 ∘ 𝜋1 + (𝜋2
2):

𝑠(𝑗1, 𝑗2) = 𝑗1 ∘ 𝜋1 + 𝜋2 ⋅ 𝑗2 ∘ 𝜋1 ∈ 𝐽 ∘ 𝜋1(6.9)

Given a representative 𝜓 ∶ ℝu� × ℝ of an element ̂𝜓 of 𝒞∞(ℝu� × ℝ)/(𝐽 ∘ 𝜋1 + (𝜋2
2)), we can twice

apply Hadamard’s Lemma to the second variable only and write

𝜓 = 𝜓(𝜋1, 0) + 𝜋2 ⋅
𝜕𝜓
𝜕𝜋2

(𝜋1, 0)) + 𝜋2
2 ⋅ ℎ(6.10)

. Only the first two summands are relevant, since 𝜋2
2 is factored out. Therefore, its equivalence

class modulo 𝐽 ∘ 𝜋1 + (𝜋2
2) is the same as that of

𝑠(𝑟(𝜓)) = 𝜓(−, 0) ∘ 𝜋1 + 𝜋2 ⋅
𝜕𝜓
𝜕𝜋2

(−, 0)) ∘ 𝜋1 .(6.11)

The other direction doesn’t even touch representatives themselves:

𝑟(𝑠(𝑓 , 𝑔)) = (𝑓 + 0 ⋅ 𝑔, 1 ⋅ 𝑔 + 𝜋2 ⋅ 0) = (𝑓 , 𝑔) ,(6.12)

since u�u�2
u�u�2

= 1 and 𝑔 ∘ 𝜋1 doesn’t depend on 𝜋2.
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6 𝒞∞-Rings as a Model

6.3 The smooth Zariski Grothendieck topology

Given an element 𝑎 of a finitely generated 𝒞∞-ring 𝐴, we write 𝐴[𝑎−1] for the localization of 𝐴 at 𝑎. It
still is finitely generated, since 𝒞∞(ℝu�)/𝐼[𝑎−1] = 𝒞∞(ℝu� × ℝ)/(𝐼 ∘ 𝜋1 + (𝜋2 ⋅ 𝑎 ∘ 𝜋1 − 1)) It can also be
expressed as pushout of localization by the identity in 𝒞∞(ℝ) along 1u� ↦ 𝑎:

𝒞∞(ℝ)

𝒞∞(ℝ)[1−1
ℝ ]

𝐴

𝐴[𝑎−1]

1ℝ ↦ 𝑎

1ℝ ↦ 𝑎

1
−1
ℝ ↦ 𝑎−1

pushout

.(6.13)

This lets us easily determine pushouts of localization by pushout pasting:

𝒞∞(ℝ)

𝒞∞(ℝ)[1−1
ℝ ]

𝐴

𝐴[𝑎−1]

𝐵

𝐵[𝑓 (𝑎)−1]

1ℝ ↦ 𝑎

1ℝ ↦ 𝑎

1
−1
ℝ ↦ 𝑎−1

𝑓

𝑎−1 ↦ 𝑓 (𝑎)−1

;(6.14)

we see that the pushout of the localization of 𝐴 by 𝑎 along 𝑓 is simply 𝐵 localized by 𝑓 (𝑎u�).

We define the smooth Zariski Grothendieck topology on 𝕃 as in [Moerdijk and Reyes, 1991, VI.1]: A
covering sieve of a locus 𝐴 is of the form 𝑆 = {𝐴 → 𝐴[𝑎−1

1 ], … , 𝐴 → 𝐴[𝑎−1
u� ]}; it is given by finitely many

elements 𝑎1, … , 𝑎u� ∈ 𝐴 that generate 𝐴, i.e. 1 ∈ (𝑎1, … , 𝑎u�).

Lemma 15. This indeed defines a Grothendieck-Topology.

Proof: We check the conditions on morphisms:

Identity 1u� = (𝐴[1−1] → 𝐴) .
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6.3 The smooth Zariski Grothendieck topology

Base change We start with a morphism 𝑓 ∶ 𝐴 → 𝐵 and 𝐴 → 𝐴[𝑎−1
1 ] … , 𝐴 → 𝐴[𝑎−1

u� ] such that
1 ∈ (𝑎1, … , 𝑎u�). Pullback of loci corresponds to pushout of 𝒞∞-rings. This means we have
to make sure that 1 ∈ (𝑓 (𝑎1), … , 𝑓 (𝑎u�)). This is the case as

1 =
u�

∑
u�=1

𝑎u� ⇒ 1 = 𝑓 ⎛⎜
⎝

u�
∑
u�=1

𝑎u�⎞⎟
⎠

=
u�

∑
u�=1

𝑓 (𝑎u�) .(6.15)

Locality Assume we are given 𝑎1, … , 𝑎u� ∈ 𝐴 with 1 being an 𝐴-linear combination of them
and for each 𝑖 = 1, … 𝑛 elements 𝑎u�1, … 𝑎u�u�u�

of 𝐴[𝑎−1
u� ] with 1 = ∑u�u�

u�=1 𝑃u�u�𝑎u�u� for some 𝑃u�u� ∈

𝐴[𝑎−1
u� ]. Each 𝑎u�u� ∈ 𝐴[𝑎−1

u� ] can be written as 𝑏u�u�𝑎
−u�u�u�
u� with 𝑏u�u� ∈ 𝐴. This allows us to rewrite

𝐴[𝑎−1
u� ][𝑎−1

u�u� ] = 𝐴[(𝑏u�u�𝑎u�)−1], since 𝑎−1
u� = 𝑏u�u�(𝑏u�u�𝑎u�)−1 and 𝑎−1

u�u� = 𝑏−1
u�u� 𝑎u�u�u�

u� = 𝑎u�u�u�+1
u� (𝑏u�u�𝑎u�)−1 imply

𝐴[𝑎−1
u� ][𝑎−1

u�u� ] ⊆ 𝐴[(𝑏u�u�𝑎u�)−1], and (𝑏u�u�𝑎u�)−1 = 𝑎−1
u�u� 𝑎−u�u�u�−1

u� implies the reverse inclusion. What
we therefore have to show is that 1 ∈ (𝑏u�u�𝑎u�|𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽u�)u�.

For each 𝑖, we have 1 = ∑u�u�
u�=1 𝑃u�u�𝑏u�u�𝑎

−u�u�u�
u� = ∑u�u�

u�=1 𝑄u�u�𝑏u�u�𝑎u� with appropriate 𝑄u�u� ∈ 𝐴[𝑎−1
u� ]. We

call 𝑘u� the highest exponent of 𝑎−1
u� in any of those 𝑄u�u� and multiply both sides with 𝑎u�u�

u� to
get 𝑎u�u�

u� = ∑u�u�
u�=1 𝑐u�u�(𝑏u�u�𝑎u�), this time with coefficients 𝑐u�u� ∈ 𝐴. Thus (𝑎u�u�

u� |𝑖 ∈ 𝐼)u� ⊆ (𝑏u�u�𝑎u�|𝑖 ∈
𝐼, 𝑗 ∈ 𝐽u�)u�. Let 𝑘 be the largest of these 𝑘u�.

It is time to use the linear combination 1 = ∑u�
u�=1 𝑐u�𝑎u� from our first assumption: We take

the 2𝑘u�ℎ power of both sides and observe that all terms of the right hand side multinomial
have a factor 𝑎u�+u�

u� for some 𝑖 and are therefore in (𝑎u�u�
u� |𝑖 ∈ 𝐼)u�.

This topology is subcanonical [Moerdijk and Reyes, 1991, VI, Lemma 1.3]. The isomorphism defined
in the proof of theorem 14 is induces an isomorphism of sheaves 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅u�) ∼−→ 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅2).
We will conclude by realizing that theorem 14 can can be transported into the sheaf topos and that
therefore we have a topos with a line object as in Axiom 1.

As [Mac Lane and Moerdijk, 1992, III.6] demonstrates, the calculation an exponential of sheafs can
be performed by calculating the exponential of presheaves. Using the fact that the Yoneda embed-
ding preserves exponentials once more, this means 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅u�) = 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅)𝒞∞-u�u�u�u�𝒞∞-u�u�u�u�𝒞∞-u�u�u�u�(−,u�)

in the category of sheaves. In an analogous manner, with [Mac Lane and Moerdijk, 1992, III.4] it
is clear that taking representable sheaves preserves limits. Therefore, 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅) is also a ring
object, 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝐷) is its subobject of nilsquare elements as it was defined as an equalizer, and
𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅2) = 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅)2. We conclude that the smooth Zariski topos with 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔(−, 𝑅)
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and its arithmetic operations satisfies Axiom 1 and hence is a model for synthetic differential geo-
metry.

As discussed in [Moerdijk and Reyes, 1991, VI], this model has some desired properties that make it
for some uses better suited than the presheaf topos on 𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔𝒞∞-𝑅𝑖𝑛𝑔, like the line object being a local ring
and having internal arithmetics with infinitely large natural numbers.
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