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Abstract

After defining the necessary concepts, we state, proof and discuss the
Tannaka Duality for finite groups, which gives a way to recover a group
from its tensor category of k-linear representations. Here k is an arbitrary
field; this generalizes the statement from that of many publications, where
certain properties of k, like being algebraically closed or of characteristic
prime to the order of the group, are required. The Tannaka Duality is illus-
trated by the example of the groups D8 and H8 which have the same repre-
sentation category but different tensor structures on it. Finally we present
some results that one can get for more general objects than finite groups.
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0.1 Notation
G will always denote a finite Group and k an arbitrary field. We denote by k−mod
the category of finite-dimensional k-vector-spaces.

1 Representations, theGroupAlgera and the Forget-
ful Functor F

Definition 1 (Representations).

• A (finite dimensional k-linear) representation (V, φ) (of G) is a k-vector-space V
together with a group homomorphism φ fromG to the group Aut(V) of vector-space
automorphisms of V .

• A morphism between two representations (V, φ), (W, ψ) is given by a linear map
f : V −→ W that is compatible with the action of G, which means that for any
g ∈ G the square

V
f //

φ(g)
��

W
ψ(g)

��
V

f // W

(1)

commutes.

• One often writes g · v for φ(g)(v).

With these definitions, the representations of G form a category; we call it
k − modG. There are some constructions in this category that we will need.
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Definition 2 (Some operations in the category of representations).

• The direct sum of two representations (V, φ) and (W, φ) is (V, φ) ⊕ (W, φ) = (V ⊕
W, φ ⊕ ψ) .

• The tensor product of two representations (V, φ) and (W, ψ) is (V, φ) ⊗ (W, ψ) =

(V ⊗W, φ⊗ψ) where (φ⊗ψ)(g)(v⊗w) = φ(g)(v)⊗ψ(g)(w). We denote by (V, φ)⊗m

the m-fold left tensor product of (V, φ) with itself.

• A subrepresentation of (V, φ) is a morphism ι : (U, ν) −→ (V, φ) that is an injective
map of the vector spaces. One identifies it with its image (ι(U), ι ◦ ν). This way,
the subrepresentations of (V, φ) are those subspaces of V that are stable under the
action of G.

• A representation is called irreducible if it has no subrepresentation not identifiable
with itself or the zero-representation ({0V}, g 7→ id{0V })

• Let (V, φ) be a representation. We define the dual representation, by (V∗, φ∗), where
φ∗(g)( f ) B f ◦ φ(g−1).

• Let m = (m1, . . .mr), n = (n1, . . . nr) ∈ Nr
0 and

(V, φ)

be a representation. Then denote

Tm,n(V, φ) B
r⊕

i=1

(V, φ)⊗mi ⊗ (V∗, φ∗)⊗ni . (2)

Definition 3 (GroupAlgebra). The group algebra k[G] is the k-vector-space with basis
G and multiplication based on the product in G.

In k[G] we have 1 = 1keG.
The Group algebra construction is free in the sense that for any group ho-

momorphism f from G into the multiplicative group of an algebra A, there is
exactly one algebra homomorphism k[ f ] : k[G] −→ A making the following dia-
gram commute:

k[G]×

k[ f ]|A
×

k[G]×
��

k[G]

k[ f ]
��

G
f //

- 


<<yyyyyyyy
A× A

(3)
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For g ∈ G the left multiplication with g is a k-linear automorphism `g of k[G].
This defines a representation `.

It is easy to see that a representation is the same thing as a finite-dimensional
k[G]-module and that the category of representations is isomorphic to the cate-
gory of finite dimensional k[G] modules k[G] − mod.

2 The Forgetful Functor F : k − modG −→ k − mod

Definition 4 ( F). We define F : k − modG −→ k − mod , (V, φ) 7→ V

We take a closer look on the k-algebra End(F) of natural transformations from
F to itself and its subgroups Aut(F) and Aut⊗(F).

Per definitionem, an endomorphism τ ∈ End(F) is a family of linear maps(
τ(V,φ) : F(V,φ) = V −→ V = F(V,φ)

)
(V,φ) representation such that for any morphism of

representations f : (V, φ) −→ (W, ψ) the “naturality” square

V
f

��

τ(V,φ)
// V

f
��

W τ(W,ψ)
// W

(4)

(where we write U for F(U, ψ) and f for F( f ) ) commutes. τ(V,φ) is called the
component of τ at (V, φ). The composition of two endomorphisms is the family
consisting of the compositions of the components.

The multiplication with a fixed element of k[G] on each representation as
k[G]-module is an endomorphism of F (but not a tensor morphism); this gives
End(F) the structure of a k[G]-(left-)algebra.

If each τ(V,φ) is an automorphism of the vector space V , then the family of in-
verses (

τ−1
(V,φ) : V −→ V

)
(V,φ) rep. B τ−1 is an endomorphism of F as well, and the

compositions of the two yield idF . So τ is an automorphism of F if and only if
each component is an isomorphism of its vector space. The group of all auto-
morphisms is called Aut(F).

Considering the tensor structure on the category of representations, we can
ask if an automorphism of F respects it. We call τ ∈ Aut(F) tensor automorphism
and write τ ∈ Aut⊗(F) iff for any two representation (V, φ) and (W, ψ) the square

V ⊗Wτ(V,φ)⊗τ(W,ψ)
// V ⊗W

V ⊗Wτ(V,φ)⊗(W,ψ)
// V ⊗W

(5)
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commutes, i.e. τ(V,φ)⊗τ(W,ψ) = τ(V,φ)⊗(W,ψ) . For example, if k = Q, the automorphism
of F that is on any vector space V the multiplication with a ∈ Q − {0, 1} is not a
tensor automorphism, as in general av⊗ aw = a2v⊗w , av⊗w. As compositions
and inverses of tensor automorphisms are such as well, Aut⊗(F) is a subgroup of
Aut(F).

3 The Tannaka-Duality for Finite Groups
For an element g ofG, we define an endomorphism of F named γ(g) as the family
where each component γ(g)(V,φ) is the automorphism φ(g). By definitions of the
tensor product of representations and of vector space maps, we have

∀V,W∀v ∈ V,w ∈ W : γ(g)(V,φ)⊗(W,ψ)(v ⊗ w) = (φ(g) ⊗ ψ(g))(v ⊗ w)
= φ(g)(v) ⊗ ψ(g)(w) = γ(g)(V,φ) ⊗ γ(g)(W,ψ)(v ⊗ w) ,

hence γ(g)(V,φ)⊗(W,ψ) = γ(g)(V,φ) ⊗ γ(g)(W,ψ) and therefore γ(g) ∈ Aut⊗(F). As the rep-
resentation ` is faithful, γ is an embedding G ↪→ Aut⊗(F). The statement of the
Tannaka-Duality for finite groups is that all tensor automorphisms are obtained
this way.

Theorem 1 (Tannaka-Duality).

γ : G −→ Aut⊗(F) (6)
g 7−→ γ(g) (7)

is a group isomorphism.

4 A proof of the Tannaka-Duality for Finite Groups
Proof of the Tannaka-Duality. By the freeness property of k[G] we get a map κ B
k[γ|Aut(F)] : k[G] −→ End(F). It is clear that κ coincides with the canonical map-
ping − · 1 from k[G] into the k[G]-algebra End(F).

We define the map

β : End(F) −→ k[G]
τ 7−→ τk[G](1) ,

writing now and in the following simply k[G] for the representation (k[G], `); β
is a morphism of algebras satisfying β ◦ κ = idk[G]. The latter implies that β is
surjective. The situation combined in a diagram is the following:
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G� _

γ

��

� � // k[G]×� _

κ

��

⊆ k[G]� _

κ

��
Aut⊗(F) ⊆

β⊗

@@���������������
Aut(F) ⊆

β

OOOO

End(F)

β

OOOO
(8)

Our strategy is to show that β⊗ is actually an isomorphism between Aut⊗(F)
and G.

It remains to show that

s β(Aut⊗(F)) ⊆ G. (Then β⊗ is a surjective map from Aut⊗(F) to G because
β ◦ κ = idk[G] and therefore β ◦ γ = idG, which implies β⊗(Aut⊗(F)) ⊇ G.)

i β⊗ is injective.

Proof of i. We proof the injectivity of the algebra homomorphism β⊗ by showing
that even β is injective, which is equivalent to the fact that τ ∈ End(V), β(τ) = 0
implies τ = 0.

Let (V, φ) be any representation, i.e. a k[G]-module. We denote dimk(V) = d.
The module structure can be expressed as a map of k-vector-spaces

π : k[G] ⊗k V −� V ,
g ⊗ v 7−→ φ(g)(v)

which is then by definition a map of k[G]-modules. As k[G] ⊗k V � k[G] ⊗k kd =

k[G]d as k[G]-modules, π defines an epimorphism from k[G]d to (V, φ).
Now let τ ∈ End(V) with β(τ) = 0. Writing out the right multiplication repre-

sentation, we get τk[G](g) = τk[G](1 · g) = τk[G](1) · g = 0, and by this τk[G] = 0.
k[G]d is the sum of d copies of k[G], on each of which the component of τ is

zero. So by naturality of τ applied on the inclusions we get τk[G]d = 0.
By the naturality of τwe get the commutativity of the square

k[G]d 0 //

π
����

k[G]d

π
����

V
τ(V,φ) // V

which means τ(V,φ) ◦ π = 0, and the fact that π is an epimorphism yields τ(V,φ) = 0.
As (V, φ) was arbitrary, it follows that τ = 0. �

Before verifying s, we prove two general propositions about representations.
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4.1 Some Statements About Affine Algebraic Groups
For the first proposition, we need some definitions from algebraic geometry, es-
pacially the notion of an affine algebraic group. An affine algebraic variety V is
defined by some ideal (p1, . . . , pm) ⊆ [̨X1, . . . , Xn] as the subset of An B kn where
every polynomial in I vanishes. A morphism of varieties is the restriction of a
polynomial map between the Ais. To a variety V we associate the finitely gener-
ated algebra k[V] of polynomial functions to k on V , called the coordinate ring
of V . Furthermore, to a morphism φ : V −→ W we define k[φ] : k[W] −→ k[V] as
precomposition with φ, i.e. k[φ]( f ) = f ◦φ. By this k[−] is a contravariant functor
that sends products to tensor products of algebras.

An affine algebraic group G is now a group object in the category of affine
varieties, i.e. a variety G together with morphisms µ : G × G −→ G and η :
{0} −→ G and −−1 : G −→ G satisfying the common group axioms. Through
k[−], this produces algebra maps k[µ] : k[G] −→ k[G] ⊗ k[G], k[η] : k[G] 7→ 0 and
k[−1] : k[G] −→ k[G] .

An action of an affine algebraic group on a variety is a usual group action
• : G × V −→ V that is a morphism of varieties. It induces also an action of G on
k[V] via g ? f B f ◦ (g−1 • _).

For example any finite set can be seen a a variety and any finite group as a
discrete affine algebraic group. Also linear groups of finite dimensional vector
spaces are affine algebraic groups; their coordinate ring is k[A11, . . . , Add,Z]/(Z det(A)−
1).
Lemma 5. Let H be an affine algebraic group with an action • on a variety V and let
A < k[V] be a finite dimensional subspace of the coordinate ring. Then the space H?A =

{a ◦ (h−1 • _) | a ∈ A, h ∈ H} is finite dimensional.
Note that H ? A is invariant under the induced action ? of H.

Proof of Lemma 5. As A is finite dimensional, it is the finite sum of one dimen-
sional vector spaces A j. Thus we can assume for the proof that A is one dimen-
sional, say spanned by a single function a.

Under k[−], the action gives an algebra map k[•] : k[V] −→ k[H] ⊗ k[V], send-
ing a to an element of the form

k[•](a) =
∑
i∈I

ei ⊗ fi with ei ∈ k[H] , fi ∈ k[V] and |I| < ∞. (9)

Applying this to the definitions of the induced group action and the functor k[−]
on morphisms yields for any v ∈ V

h ? a = a(h−1 • _) = k[•](a)(h−1, _) =
∑
i∈I

ei(h−1) fi(_) =
∑
i∈I

ei(h−1)︸ ︷︷ ︸
∈k

fi. (10)
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This means that for any h ∈ H we have h?a ∈ 〈 fi〉i∈I . Hence H?a ⊆ 〈 fi〉i∈I is finite
dimensional. �

With help of this Lemma, we can prove the following proposition:
Proposition 6 (Chevalley’s Theorem). Let V be a finite dimensional k-vector-space
and G an arbitrary closed algebraic subgroup of the affine algebraic group GlV . Then
there is a representation (U, ψ) of GlV and a subspace C ⊆ U such that G = S tab(C) B
{ f ∈ GlV | f |C = idC}.

Proof of Proposition 6. We consider the variety GlV and the left action • of GlV

on it, which is a not necessarily finite dimensional representation of GlV . The
ideal I B I(G) C k[GlV] of functions vanishing on G is finitely generated, say by
some elements ai, as finite dimensional algebras are noetherian. Let A denote
the vector space spanned by the ai’s. We apply Lemma 5 with H ← [ GlV and
A← [ A and see thatGlV ?A B E is finite dimensional and, as it is invariant, (E, ?)
is a representation of GlV .

We set C B E ∩ I; it is invariant under the ?-action of G as E and I are (the
latter because g ∈ G, f ∈ I ⇒ g ? f (G) = f (g−1G) = f (G) = 0).

As G is closed, V(I(G)) = G, i.e. any common zero of I lies in G. If h ∈ GlV

stabilizes I then h ∈ G:

h ∈ S tab(I) :⇔ ∀ f ∈ I : 0 = (h ? f )(G) = f (h−1G)⇒ h−1G = G ⇒ h ∈ G. (11)

If further an element l of GlV stabilizes C, since C contains the generators ai of I,
it follows

l ? I = l ? (Ck[GlV]) = (l ?C)(l ? k[GlV]) = Ck[GlV] = I, (12)

implying l ∈ G.
�

4.2 Affine Group Schemes
The goal of this subsection is to proove the following proposition:
Proposition 7. Let W be a finite dimensional k-vector-space. Then any finite dimen-
sional representation of GlW can be noted as a subrepresentation of a quotient of Tm,nW
(for some r ∈ N0,m = (m1, . . .mr), n = (n1, . . . nr) ∈ Nr

0) .
The proof of this proposition can best bemadewith the notion of affine group

schemes that we want to introduce in a very short manner, concentrating on the
few facts that we need.
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Definition 8 (AffineGroup Schemes). The category of affine schemes over k is (equiv-
alent to) the opposite of the category of k-algebras. (To be precise, an affine scheme (over k)
is the spectrum, i.e. set of prime ideals, of a k-algebra A equipped with the Zariski topol-
ogy whose closed sets are the V(I)I ideal in A, where V(I) is the set of prime ideals containing
I, and with the structure sheaf that is defined by sending the open sets S pec(A)−V(( f ))
to the localization of A at f .)

An affine group scheme is now a group object in the category of affine schemes, that
is a k-algebra A with three algebra maps

∆ : A −→ A ⊗k A (13)
ε : A −→ k (14)
S : A −→ A (15)

that fulfill the opposite properties of the group axioms associativity, identity and inver-
sion.

From here on A denotes always an algebrawith this opposite group structure
that is anti-identified with the corresponding affine group scheme S pec(A). An
object with this structure is also called a Hopf-algebra. G denotes S pec(A) with
its group structure.
Definition 9. A representation of A in a vector space V is an algebra map from the
opposite of the affine group scheme GlV to A whose opposite is a group homomorphism.
The representation form a category with morphisms linear maps that are compatible with
the group action. Many definitions for affine group schemes are analogue to the ones in
2.

For the Hopf-algebra A there is a dual concept to the one of a module:
Definition 10. A comodule over A is a k-vector-space V with a k-linear map ρ : V −→
V ⊗ A that fullfills the opposite module axioms (id ⊗ ε) ◦ ρ = idV and (idV ⊗ ∆) ◦ ρ =

(ρ ⊗ idA) ⊗ ρ. Morphisms between comodules are linear maps that satisfy the obvious
compatibility conditions.

Note that when A is a finitely generated k-algebra, i.e. A = k[X1 . . . Xn]/I, then
we have the situation of an affine algebraic group as defined above.

We will need the following two lemmata:
Lemma 11. For a k-vector-space V one can find a one-to-one correspondence between
the representations of G in V and the A-comodule structures on V .

Proof. We choose a basis (ei)i∈I . If we have a anti-algebra map ρ : G 7→ GlV , we
identify φ(g) ∈ G with the corresponding matrix (r(g)i, j)i, j ∈ I. The definition of
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a representation is satisfied if and only if ρ is a homomorphism of groups, i.e.
that for any g, h ∈ G and i, j ∈ I we have:

r(gh)i j =
∑
k∈I

r(g)ikr(h)k j. (16)

On the other hand, ρop : V −→ V ⊗ A as a k-linear map can be written as ρ(e j) =∑
i∈I ei ⊗ ri j. With this, is it easy to see that ρop defines a comodule if and only if

for anyi, j ∈ I we have:
∆(ri j) =

∑
k∈I

rikrk j (17)

Using the relation between ∆ and its opposite, the multiplication in G, as well as
the multiplication in A transferred to ist opposite, we get

∆(ri j)(gh) = r(gh)i j (18)∑
k∈I

rikrk j(gh) =
∑
k∈I

r(g)ikr(h)k j. (19)

Therefore the ri j that define ρ determine that ρ is exactly then a representation
when ρop defines a comodule structure on V . �

Lemma 12. Every finite-dimensional representation is a subrepresentation of the n-fold
sum of the regular representation, Am, for some finite m.

Proof. We regard the representation as comodule (W, ρ) and see the vector space
W as isomorphic to km. The definition of (W, ρ) being a comodule shows that the
diagram

W
ρ //

ρ

��

A ⊗ km = Am

∆⊗ρ

��
A ⊗ km = Am id⊗ρ // A ⊗ A ⊗W

(20)

commutes, which shows that ρ : (W, ρ) 7→ Am is a morphism of comodules. As
W � k ⊗ W in a natural way, we get the injectivity of ρ from the commutative
triangle

W
ρ // A ⊗ km = Am

ε⊗id
��

k ⊗W
∼

ffLLLLLLLLLLL

(21)

�

Now we can prove Proposition 7.
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Proof of Proposition 7. Againwe identify the representationwith the correspond-
ing comodule. The algebra opposite to GlV is A = k[A11, . . . , Add,Z]/(Z det(A)− 1).
Z can be identified with 1

det(A) , so we have a graduation by degree on A. Us-
ing Lemma 12, we just have to prove the statement for finite dimensional sub-
comodules of Am; those are direct sums of their projections on the A’s, there-
fore we can assume m = 1 and only have to deal with the subcomodules kn '

W ⊆ A. As it is finite dimensional, W is for some s, t ∈ (N) contained in W ′ =

{Zr p(A11, . . . , Add) | deg(p) ≤ s, r ≤ t} ⊆ A which is itself the direct sum of the
Zr{p(A11, . . . , Add) | deg(p) = c} for 1 ≤ d ≤ s. Let (e j)1≤ j≤n denote the standard
basis of kn. Expressed as comodule action, the regular representation is given
by e j 7−→

∑n
i=1 e j ⊗ Ai j. Here the map e j 7→ Ai j ∈ A is a comodule morphism

kn −→ A. This means that also their sum
⊕

i j k · Ai j = {p(A11, . . . , Add) | deg(p) = 1}
is a subcomodule of the n2-fold direct sum of the regular representation. The
map

{p(A11, . . . , Add) | deg(p) = 1}⊗c −→ {p(A11, . . . , Add) | deg(p) = c} (22)
p1(A11, . . . , Add) ⊗ . . . ⊗ pc(A11, . . . , Add) 7−→ p1(A11, . . . , Add) · . . . · pc(A11, . . . , Add)

(23)

is surjective; so {p(A11, . . . , Add) | deg(p) = c} is a quotient cth tensor power of the
subcomodule of the n2-fold direct sum of the regular representation. In partic-
ular {p(A11, . . . , Add) | deg(p) = d} is contained, which has the determinant det(A)
as an element. det(A) corresponds to the determinant repesentation

det : GlV −→ Aut(k1) = k (24)
g 7−→ det(g). (25)

Because of the general fact det(B−1) = 1
det(B) , the definition of dual representations

says that 1
det , the corresponding to Z, is the dual representation of det. So Z is in

the dual of {p(A11, . . . , Add) | deg(p) = d} and Zr in this duals rth tensor power.
Tensoring it with {p(A11, . . . , Add) | deg(p) = c}, we get W ′. We have constructed
W ′ and with that W from the regular representation only using subcomodules,
direct sums, tensor powers and duals. �

4.3 Conclusion
Now we can proof the rest of the theorem:

Proof of s. We have G ↪→ k[G]× ↪→ Glk[G] via left multiplication. By Proposition
6, there is a representation (U, ψ) of Glk[G] and a subrepresentation C ↪→ (U, ψ)
such thatG = S tab(C) Using Proposition 7we regard (U, ψ) as subrepresentation
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of a quotient of Tm,nk[G]/N. Wewill calculate in Tm,nk[G], as the fact of something
being in the stabilizer of a subspace stays true if we go to the subqutioent. Now
let τ ∈ Aut⊗(F) and v ∈ Tm,nk[G], written as v = v1 + . . . + vr with vi = xi1 ⊗ . . . ⊗
ximi
⊗ fi1 ⊗ . . . ⊗ fini

.

τTm,nk[G](v) = τ⊕r
i=1 k[G]⊗mi⊗(k[G]∗)⊗ni (v1 + . . . + vr) (26)

=

r∑
i=1

τ⊗mi
k[G] ⊗ τ(k[G]∗)⊗ni (xi1 ⊗ . . . ⊗ ximi

⊗ fi1 ⊗ . . . ⊗ fini
) (27)

Aut⊗
=

r∑
i=1

τk[G](xi1) ⊗ . . . τk[G](ximi
) ⊗ τk[G]∗( fi1) ⊗ . . . τk[G]∗( fini

) (28)

=

r∑
i=1

β(τ) · xi1 ⊗ . . . β(τ) · ximi
⊗ fi1(β(τ) · _) ⊗ . . . fini

(β(τ) · _) (29)

which is the module-action of β(τ); this fact is passed to the transformation on
the quotient τW/N . As τ is a natural transformation, it stabilizes C:

C
τC //

� _

��

C� _

��
Tm,nk[G]/N

τTm,nk[G]/N
// Tm,nk[G]/N

(30)

We conclude that β(τ) is in the stabilizer ofC, which isG. So we have showed
s and completed the proof of the Tannaka Duality. �

�

5 Example: Distinguishing the Representation Ten-
sor Categories of D8 and H8

Wewant to demonstrate the possibility that two different groups have the same
group algebra and character table but, as the Tannaka-Duality assures, differ-
ntly structured representation tensor categories. For this we take a look at two
groups of order 8 and set for simplicity k = C. Hereby we use some theory of ir-
reducible representations to show some properties of the groups, but for the key
statements in relation with the Tannaka-Duality it is not necessary to be familiar
with it.
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5.1 D8

D8 is the dihedral group with 8 elements, presented as D8 = 〈a, b|a4 = 1 =

b4, b−1ab = a−1〉. There are 5 conjugation classes of D8:

{1}, {r2}, {r, r3}, {s, sr2}, {s, sr2}, {sr, sr3} (31)

There is a 2-dimensional representation of D8, we call it (C2, ρ) given inmatrix
form in the standard basis (e1, e2) by

r 7→
(
0 −1
1 0

)
(32)

s 7→
(
0 1
1 0

)
. (33)

This representation is irreducible. The commutator subgroup of D8 shows to
be the center with 2 elements. It follows that there are 8

2 = 4 irreducible repre-
sentations of dimension 1. As the number of irreducible representations is the
number of conjugation classes, those one 2-dimensional and 4 1-dimensional
ones are the only irreducible representations of D8.

We take a closer look at the tensor square representation (C2, ρ) ⊗ (C2, ρ). Its
dimension is 4 and it is composed as sum of the 4 irreducible one-dimensional
subrepresentations

V1 B 〈e1 ⊗ e1 + e2 ⊗ e2〉, φ(r) = 1, φ(s) = 1 (34)
V2 B 〈e1 ⊗ e1 − e2 ⊗ e2〉, φ(r) = −1, φ(s) = −1 (35)
V3 B 〈e1 ⊗ e2 + e2 ⊗ e1〉, φ(r) = −1, φ(s) = 1 (36)
V4 B 〈e2 ⊗ e1 − e1 ⊗ e2〉, φ(r) = 1, φ(s) = −1. (37)

Now let τ be a tensor automorphism of the forgetful functor F, and let

τρ = A =

(
a b
c c

)
∈ GlC2 (38)

be its component at (C2, φ). As it is a tensor automorphism, τρ⊗ρ = A ⊗ A.

Lemma 13. Let (U, φ) be a trivial representation and τ a tensor endomorphism of F.
Then τ(U,φ) is the identity.
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Proof. Choose a non-zero vector e from U. Then

I : U ⊗ U −→ U (39)
ke ⊗ le 7−→ kle (40)

is an isomorphism of representations. The linearity of τ(U,φ) means that there is
a λ ∈ k× such that τ(U,φ)(ke) = kλe By naturality and tensor-functoriality of τ we
get the following diagram:

ke ⊗ le � //
_

��

λke ⊗ λle_

��

U ⊗ Uτ(U,φ)⊗τ(U,φ)
//

I
��

U ⊗ U

I
��

U
τ(U,φ) // U λ2kle

kle � // λkle

qqqqqqqqqq

qqqqqqqqqq

(41)

saying that λmust be 1. �

We use this to have the fact that A ⊗ A acts trivial on V1. This means that

e1 ⊗ e1 + e2 ⊗ e2 = (A ⊗ A)(e1 ⊗ e1 + e2 ⊗ e2) (42)
= (ae1 + ce2) ⊗ (ae1 + ce1) + (be1 + de2) ⊗ (be1 + e2) (43)
= (a2 + b2)(e1 ⊗ e1) + (ac + bd)(e1 ⊗ e2 + e2 ⊗ e1) + (c2 + d2)(e2 ⊗ e2),

(44)
so

a2 + b2 = 1 (45)
c2 + d2 = 1 (46)

ac + bd = 0. (47)

Replacing the map I in Lemma 13 by a suitable map respecting the tensor prod-
uct of the action ofG one can see that also for non-trivial one-dimensional repre-
sentations the component of τmust be the action of some element ofG. Applied
to V2 this implies that A ⊗ A is there either the identity or the multiplication by
−1. Like above, we get the following:

±(e1 ⊗ e1 − e2 ⊗ e2) = (A ⊗ A)(e1 ⊗ e1 − e2 ⊗ e2) (48)
= (ae1 + ce2) ⊗ (ae1 + ce1) − (be1 + de2) ⊗ (be1 + de2) (49)
= (a2 − b2)(e1 ⊗ e1) + (ac − bd)(e1 ⊗ e2 + e2 ⊗ e1) + (c2 − d2)(e2 ⊗ e2),

(50)
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and by this the secound set of equations

a2 − b2 = ±1 (51)
d2 − c2 = ±1 (52)
ac + bd = 0. (53)

The last equation of each set gives immediately a = 0 ∨ c = 0 and b = 0 ∨ d = 0.
If a = 0 then b , 0, so d = 0, and doing this for all four one sees that a = 0 = d or
b = 0 = c. In the first case, it must be b2 = 1 = c2 and in the secound b2 = 1 = c2.
So there are no more than 8 possibilities for the entries of the matrix A. But the
group action of D8 gives already 8 different matrices of tensor automorphisms.
This demonstrates that the tensor automorphisms of τ are the same as the group
D8.

5.2 H8

H8 is the quaternion group, presented as 〈 j, k| j4 = 1 = k4, j2 = k2, k j = jk〉(,
where as for the quaternions we can see jk as i and j2 = k2 = i2 as −1). With
the same arguments as for D8 we find that there are four 1-dimensional and one
2-dimensional representations, the latter, called ψ, is given by:

j 7→
(
i 0
0 i

)
(54)

k 7→

(
0 1
−1 0

)
. (55)

This time, the tensor square (C2, φ)⊗ (C2, φ) decomposes into the same vector
spaces as for D8 with permutated actions:

W1 B 〈e1 ⊗ e1 + e2 ⊗ e2〉, φ(r) = −1, φ(s) = 1 (56)
W2 B 〈e1 ⊗ e1 − e2 ⊗ e2〉, φ(r) = −1, φ(s) = −1 (57)
W3 B 〈e1 ⊗ e2 + e2 ⊗ e1〉, φ(r) = 1, φ(s) = −1 (58)
W4 B 〈e2 ⊗ e1 − e1 ⊗ e2〉, φ(r) = 1, φ(s) = 1. (59)

We take again the matrix

B =

(
a b
c d

)
∈ GlC2 (60)

of the componenent at ψ of some tensor automorphism of the forgetful functor F
for H8. We do the same calculation as above for the trivial representation, which
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is here W4:

e1 ⊗ e2 − e2 ⊗ e1 = (B ⊗ B)(e1 ⊗ e2 + e2 ⊗ e1) (61)
= (ae1 + ce2) ⊗ (be1 + de2) − (be1 + de2) ⊗ (ae1 + ce2) (62)
= (ad − bc)(e1 ⊗ e2 − e2 ⊗ e1), (63)

gives

ad − bc = 1 (64)

For W1 and W2 we get the same equations as above for V1 and V2, with the
difference that in the first equation for W1 ±1 and not only +1 are allowed. In
total we have the system of equations

ad − bc = 1 (65)
a2 + b2 = ±1 (66)
c2 + d2 = ±1 (67)
a2 − b2 = ±′1 (68)
c2 − d2 = ±′1 (69)

ac − bd = 0. (70)

There are again only 8 solutions for this system of equations which all must
be already covered by the tensor automorphisms coming from the group H8

itself.

So we have two different results for a property of the tensor category of rep-
resentations with its forgetful functor despite the ordinary categories C[G]−mod
are the same.

6 Generalizations

6.1 Tannaka-Duality for Compact Topological Groups
In the same way as we defined an affine algebraic group as a group object in
the category of varieties over a field, one gets the notion of a compact topologi-
cal group as a group object in the category of continous maps between compact
topological spaces. So a topological group is a group whose underlying “set” is
a topological space such that the group multiplication and inversion are conti-
nous. A finite dimensionalC-linear representation is a representation as defined
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for finite groups such that the map •G ⊗ V −→ V is continous for the standard
C-vector-space topology.

With the same definitions as above and the definition of a topology on natu-
ral endomorphisms of the forgetful functor F as the coarsest topology to make
each taking of a component continous with respect to the natural topology of
matrices, we get the same statement of Tannaka Duality as for finite groups and
arbitrary fields:

Theorem 2. Aut⊗(F) is compact and

γ : k − modG −→ Aut⊗(F) (71)

is an isomorphism of compact groups.
However, some steps in the proof have to be done in a different way. The

most important thing is that Proposition 7 doesn’t hold anymore if V , which
will later be used as k[G], is not finite-dimensional any more.

6.2 Tannakian Categories
The Tannaka Duality can be regarded in amuchwider context describing the in-
terplay between Tannakian categories and affine group schemes. Let still denote
k a field and G = S pec(A) an affine group scheme.

The forgetful functor F is again defined as assigning a representation of G its
vector space.

Theorem 3 (Tannaka Duality for Affine Group Schemes). The natural map γ :
G −→ Aut⊗F is an isomorphism.

We define a type of categories with a special tensor structure on it that gen-
eralizes the repesentation category of a group.

Definition 14 (Definition of Neutral Tannakian Categories). • A tensor cate-
gory C is a category with a functor C × C −→ C and a unit object I and isomor-
phisms satisfying axioms for associativity, identity and coherence.

• Such a tensor category is rigid, iff to a pair of objects belongs a “Hom”-object of C
in a natural and with ⊗ compatible way.

• It is abelian rigid tensor category when it is abelian and direct sum and ⊗ are
distributive.

• If End(I) = k, we call it abelian rigid tensor category over k.
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• A neutral tannakian category is an abelian rigid tensor category over k with an
exact faithful k-linear tensor functor F into the category of k-vector-spaces, called
fiber functor.

Examples for neutral tannakian categories are the category of k-vector-spaces,
the category of finite dimensional k-vector-spaces - for both F is the identity/inclusion
- and the category of representations of any affine group scheme.

Theorem 4. Let C be a neutral tannakian category with End(I) = k and let F : C −→
k − mod be an exact faithful k-linear tensor functor. Then Aut⊗F is representable by
some affine group scheme G and C is canonically equivalent to the category repk(G) of
representations of G in k-vector-spaces.

A proof of the last two theorems is given in “James Milne & Pierre Deligne:
Tannakian Categories”.

With the latter theorem one can find many correspondences between certain
properties of the neutral tannakian category repk(G) and the group scheme. For
example one can show that G being a finite group is equivalent to repk(G) hav-
ing an object k〈G〉 such that every object in repk(G) is a subquotient of finitely
many copies of k〈G〉. This object is, as seen in the theory of finite dimensional
representations of finite groups, the group algebra k[G]. A similar statement is
that G is an algebraic group if and only if repk(G) has an object X such that every
object in repk(G) is a subquotient of Tm,nX . We have seen the one implication
explicitely for the case G = GlV with X = V .
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