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Abstract. For a simplicial set X and an abelian group M there is
the classical result by Eilenberg and MacLane that the n-th sim-
plicial homology group Hn(X,M) of X with coefficients in M is
isomorphic to the group [X,K(M,n)] of morphisms in the homo-
topy category of simplicial sets from X to the Eilenberg-MacLane
space K(M,n). In this paper, that result is expanded to the case
where X is a simplicial sheaf and M is a sheaf of abelian groups
over some site.
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1. Introduction

This section’s purpose lies in introducing the things that will ap-
pear in the theorem and its proof as well as stating some basic lemmas
for them.

1.1. Simplicial Sheaves. Let (C, θ) be a site, that is a categoryCwith
a Grothendieck topology θ. This means (see for example chapter
III of [MacLane and Moerdijk, 1992]) that to every object U in C is
assigned a set θ(U) of subfunctors R ⊆ C(−,U) such that

(1) R ∈ θ(U), f : V → U⇒ f ∗R ∈ θ(V)
(2) R ∈ θ(U),S ⊆ C(−,U), ( f : V → U ∈ R(V) ⇒ f ∗S ∈ θ(V)) ⇒

S ∈ θ(U)
(3) C(−,U) ∈ θ(U).

A simplicial presheaf is a contravariant functor from C into the
category Set∆op of simplicial sets. With natural transformations as
morphisms, the simplicial presheaves form a category SPre(C) =
(Set∆op)Cop . For a presheaf X ∈ SPre(C) and R ⊆ C(−,U) the limit

lim
f :V→U∈R

X(V) =: X(U)R exists. The maps X( f ) : X(U) → X(V) provide

a canonical map τR : X(U)→ X(U)R.
Now X is a simplicial sheaf if for every object U ∈ C and R ∈ θ(U)

the map τR is an isomorphism (this definition is from [Jardine, 2007,
p.37]). Note that an equivalent way to define simplicial sheaves
would be as simplicial objects in the category of sheaves. The sim-
plicial sheaves form a full subcategory SSh(C) of SPre(C) and there is
a sheafification functor that turns a presheaf into a sheaf and is left
adjoint to the inclusion functor SSh(C) ↪→ SPre(C).

The usual constructions that are possible for simplicial sets, like
small limits and colimits, can be transferred to the category SSh(C)
by executing them on the stalks and if necessary using sheafification
thereafter.

For a simplicial set A there is the so called constant presheaf that
sends every object in C to A. The sheafification of this is the constant
sheaf associated to A and often simply denoted A.

If we replace the category Set of sets with that of abelian groups Ab,
we get simplicial sheaves of abelian groups, denoting their category
SShAb(C). Here everything is the same as for sets with morphisms
also having to be group homomorphisms on the sections.

We will also need sheaves of chain complexes of abelian groups,
that among other ways can be defined similar to sheaves of abelian
groups (those e.g. seen as simplicial sheaves of abelian groups con-
centrated in simplicial degree 0), by replacing the target category to
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that of chain complexes. Until mentioned otherwise, all chain com-
plexes will be bounded below at zero, i.e. they dont have nontrivial
entries at degree < 0.

1.2. Model Structures. A model structure (after [Quillen, 1967, p.1])
on a category consists of three classes of maps: weak equivalences
W, cofibrations C and fibrations F, that satisfy the following axioms.

M0: The underlying category is complete and cocomplete.
M1f: Fibrations have the right lifting property with respect to

all trivial cofibrations (i.e. cofibrations that are weak equiva-
lences):

In any square

A

B

X

Y

∼
i p

(1.1)

where p ∈ F and i ∈ W ∩ C and the vertical arrows are
arbitrary morphisms, there is a morphism k : B→ X such that
the diagram

A

B

X

Y

∼

i pk

(1.2)

commutes.
M1c: Cofibrations have the left lifting property with respect to

all trivial fibrations (i.e. fibrations that are weak equivalences):
For

A

B

X

Y

i ∈ C

∼ p ∈W ∩ F

,(1.3)
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the map k in

A

B

X

Y

i p∼k

(1.4)

exists.
Note that the liftings k are by no means unique.

M2c: Any map can be factored as a composition of a trivial
cofibration followed by a fibration.

M2f: Any map can be factored as a composition of a cofibration
followed by a trivial fibration.

M3f: F is stable under composition and pullback and contains
the class of all isomorphisms.

M3c: C is stable under composition and pushout and contains
the class of all isomorphisms.

M4f: Pullbacks of trivial fibrations are trivial fibrations.
M4c: Pushouts of trivial fibrations are trivial cofibrations.
M5: If in a diagram

X

Y

Z(1.5)

two of the three arrows are weak equivalences, then also the
third. Furthermore, W contains the class of all isomorphisms.

A model category is a category together with a model structure on
it.

An object A is called cofibrant if the morphism from the initial
object into A is a cofibration and it is called fibrant if the morphism
from A into the final object is a fibration.

The category of simplicial sets with weak homotopy equivalences
as weak equivalences, injective maps as cofibrations and Kan fibra-
tions as fibrations is a model category (see [Quillen, 1967, p.1.3]).

It is a known theorem that given two of the three classes W,C,F,
the thitd one is uniquely determined.

For a model category, we define the homotopy category which is
constructed by a process called localization that essentially factors
out weak equicalences, making them isomorphisms (for the detailed
construction refer to [Quillen, 1967, p.1.12] .
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1.2.1. For Simplicial Sheaves. On the category of simplicial sheaves,
there are several possible model structures, but the usual ones only
differ on the definitions of fibrations and cofibrations. Hence the
validity of statements made about the homotopy category, which is
defined by making weak equivalences isomorphisms, are indepen-
dent of this choice. We take the definition also used in [Morel and
Voevodsky, 1999, p.48].

W: The class of weak equivalences consists of sheaf morphisms
that are weak equivalences of simplicial sets on all stalks.

For the proof will use the following notion, that is presented and
proved to be a model structure in [Morel and Voevodsky, 1999, p.48],
of fibrations and cofibrations:

C: The cofibrations are the monomorphisms. Note that being a
monomorphism of sheaves is eqivalent to being mono on the
stalks.

F: A morphism is a fibration if it has the right lifting property
with respect to all trivial cofibrations (i.e. morphisms in W ∩
C).

For simplicial sheaves of abelian groups the definitions are the
same, only depending on the underlying simplicial sheaf of sets.

1.2.2. For Sheaves of Chain Complexes. For the category of sheaves of
chain complexes of abelian groups on C, we use a similarly defined
model structure (in details in [Hovey, 1999]) , which later allows us
to switch between the two concepts via Dold-Kan correspondence.

W: The weak equivalences are those morphisms that are quasi-
isomorphisms on all stalks. A quasi-isomorphism is a chain
complex map that induces an isomorphism in chain complex
homology.

C: Again, the cofibrations are the monomorphisms. A mor-
phism is mono if it is a mono of chain complexes on all stalks.
The latter is the case if a map is mono in each degree.

F: Consequently, the fibrations are those morphisms that have
the right lifting property with respect to all trivial cofibrations.

As morphisms from the initial object are always mono, all objects
in those model categories defined above are cofibrant.

1.3. Free Simplicial Sheaf of Abelian Groups. Given a simplicial
set A we can form the simplicial abelian group Z[A] with vertex
groups Z[A]n = Z[An], i.e. the free abelian groups over the vertex
sets, and simplicial structure maps induced by those on the sets. If we
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regard a simplicial set as a functor A : ∆op
→ Set, this process is just

postcomposition with the free abelian group functor Z : Set→ Ab.
Note that the free simplicial abelian group functor Z[−] : SSet →

SAb is compatible with the model structures.
To a simplicial sheaf of sets X we assign the free simplicial sheaf of

abelian groupsZ[X] as the sheafification of the presheaf of simplicial
abelian groups U 7→ Z[X(U)].

This free simplicial sheaf of abelian groups functor does preserve
the model structure as well, see [nla, c] and [Morel and Voevodsky,
1999, p.58].

Like the basic free abelian group functor,Z[−] is left adjoint to the
forgetful funtor that assigns a group its underlying set.

1.4. Dold-Kan Correspondence. The classical Dold-Kan correspon-
dence is a pair of functors

Ab∆op ChAb+

N

Γ(1.6)

that form an equivalence between the categories of simplicial abelian
groups and chain complexes of abelian groups.

Here the functor N is constructed in the following way: The Moore-
Complex associated to a simplicial abelian group A is a chain complex
with the group of n-simplices An at degree n and the map

∂n =

n∑
i=0

(−1)idi : An → An−1(1.7)

as n-th boundary map. Calculating with simplicial identities yields
∂n−1∂n = 0, therefore it is a chain complex. Now we regard DAn =⊕n−1

i=0 Im(si) ≤ An, the subgroup of degenerate simplices; we have,
∂n(DAn) ≤ DAn−1. Thus ∂n projects to a map on the quotients

∂n : An/DAn → An−1/DAn−1.(1.8)

This resulting chain complex of the quotients is NA and the construc-
tion assures that N is a functor. For a precise proof of that fact and
the defintion of the map Γ refer to [Goerss and Jardine, 1999, chapter
III.2].

Furthermore, the equivalence respects the model structures as
weak equivaleces and monomorphisms are preserved in both di-
rections; especially, simplicial homotopies correspond to chain ho-
motopies.
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After [Morel and Voevodsky, 1999, p.56], this construction is also
possible for sheaves by applying N respectively Γ pointwise and then
using sheafification. Thus we have an equivalence

SShAb(C) ShChAb+(C)
N

Γ(1.9)

that also preserves the model structures.

1.5. Eilenberg-MacLane Objects. For an abelian group M, let M[n]
be the chain complex

0← · · · ← 0← 0←M← 0← 0← · · ·(1.10)

where all terms are zero except for the n-th which is M.
Now we apply the functor Γ from the Dold-Kan correspondence

to get the simplicial set K(M,n) = Γ(M[n]). This simplicial set is
a classical Eilenberg-MacLane space, characterized by the property
that its siplicial homology groups πi(K(M,n)) are trivial for i , n and
the group M for i = n.

The same procedure can (again, see [Morel and Voevodsky, 1999,
p.56]) be applied for a sheaf of abelian groups M ∈ ShAb(C). Here
the sheaf complex M[n] ∈ ShChAb+(C) also is zero in all degrees but
the n-th where it is equal to M; that is with the sheaf M if regarded
as chain complex of sheaves respectively with the section of M in
each section if seen as sheaf of chain complexes. Now we use the
Dold-Kan correspondence for sheaves, getting the simplicial sheaf of
abelian groups K(M,n) = Γ(M[n]).

1.6. Injective Objects. In general, an object I is called “injective” if
it fullfills the universal mapping property that for any morphism
f : A→ I and any injection g : A ↪→ B, there is a morphism h : B→ I
with hg = f . Speaking with diagrams, that means that for any
diagram

A I

B

f

g

(1.11)

a diagonal arrow h such that
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A I

B

f

h
g

(1.12)

commutes exists.
We will often use the property that there are “enough injectives”.

That means that for any object A, there is an injective resolution, that
is a long exact sequence

0→ A→ I1 → I0 → I2 → · · ·(1.13)

where the Ii are injective objects.
From the facts that the categories Ab of abelian groups and the

category of sheaves Sh(C) have enough injectives, it is possible to
derive the existence of enough injectives for every category that we
will deal with. Those facts are shown in [nla, b].

1.7. Some Lemmas. The following two general lemmas will later
come in handy for the main theorem’s proof.

Lemma 1. If

A α
−→ B

β
−→ C(1.14)

is a fibre sequence, then

[X,A] α∗
−→ [X,B]

β∗

−→ [X,C](1.15)

is exact at [X,B].

For the proof see [nla, a]; it mainly uses the the Hom-functor pre-
serves pullbacks and that in this case the violation of right exactness
vanishes in homotopy.

Lemma 2. In an abelian category, the pushout of a monomorphism is also
a monomorphism.
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Proof. We want to prove that in a pushout diagram

B

A M

E

i
p

p′

i′

(1.16)

where i is a monomorphism, the same is true for i′.
One calculates that there is a short exact sequence

0 A B ⊕M E 0
i − p p′ + i′

(1.17)

and a morphism of short exact sequences

0 A B ⊕M E 0

0 0 M M 0

i − p p′ + i′

0 Id

0 0 + Id i’

.(1.18)

We add the kernels and cokernels of the vertical maps to the dia-
gram:

0 A B ⊕M E 0

0 0 M M 0

i − p p′ + i′

0 Id

0 0 + Id i′

0 0 ker(i′)

A B coker(i′)i
.(1.19)

Now we use the snake lemma, which gives us an exact sequence
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0→ 0→ ker(i′) ∂
−→ A i

−→ B→ coker(i′).(1.20)

Exactness at ker(i′) of course gives that ∂ is injective while exactness
at A yields im(∂) = ker(i) = 0 as i is a monomorphism. Thus ker(i′) is
injected into 0, hence trivial.

�

1.8. Prerequisites Used for the Main Theorem. For the purpose
of making the proof more straightforward, we make the following
restrictions. Note that the theorem and most lemmas stay true in
the general case, but would need some more complicated techniques
and results to be proven beforehand.

The site C should have enough points. That means that certain
properties of sheaves can be tested stalkwise. If for a morphism
f : X → Y of sheaves on C is a mono/epi/iso on all stalks, it is a
mono/epi/iso itself.

Also, we assume that there are no set-theoretic problems of any
kind, so that for example the morphism classes in the homotopy
category are sets. For this it might be needed that the category C is
small. We also use some form of axiom of choice to make sure that
Ab has enough injectives.

The object X should be a sheaf without simplicial structure. If we
still regard X as a simplicial sheaf, it only has 0-vertices.

2. [X,K(M,n)], Hn(X,M) and aMap between them

In this section we construct a natural map [X,K(M,n)]→ Hn(X,M)
which will later be showed to be an isomorphism, thus yielding the
main theorem.

Let X ∈ Sh(C) ⊂ SSh(C) be a sheaf of sets that we regard as a
simplicial sheaf where all sets of vertices of non-zero degree are
empty and let M ∈ ShAb(C) be a sheaf of abelian groups.

2.1. Definition of Hn(X,M) as Extn
ShAb(C)(Z[X]; M). We define Hn(X,M) :=

Extn
ShAb(C)(Z[X]; M). For this, we take an injectice resolution

0→M→ I0 → I1 → I2 → · · ·(2.1)

(a long exact sequence with injective objects In) and apply HomShAb(C)(Z,−)
to get the chain complex

0→ HomShAb(C)(Z[X], I0)→ HomShAb(C)(Z[X], I1)→ HomShAb(C)(Z[X], I2)→ · · · .
(2.2)
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Now the n-th homology group of X in M is the n-th homology of this
complex, i.e. the quotient of the kernel of

HomShAb(C)(Z[X], In)→ HomShAb(C)(Z[X], In+1)(2.3)

by the image of

HomShAb(C)(Z[X], In−1)→ HomShAb(C)(Z[X], In).(2.4)

Notice that for 2.1 there can exist multiple different resolutions,
however they will give rise to the same Ext-groups.

2.2. Identifying Elements of [X,K(M,n)] with Morphisms X →

K(M,n). The model structure axioms imply that any object can be
embedded into a fibrant object with the embedding being a weak
equivalence: We take the map from the object to the final object ∗
and use M2c to get a factorization into a cofibration, i.e. in our case a
monomorphism, which is a weak equivalence and a fibration. In the
case of K(M,n) we obtain such a fibrant object and call itK(M,n).

K(M,n) fibrant

K(M,n)

∼ α

(2.5)

Note that while we have a clear picture of K(M,n) by construction,
we dont know much about the structure ofK(M,n).

The weak equivalence between K(M,n) and K(M,n) translates to an
isomorphism in the homotopy category, and we have

[X,K(M,n)] = [X,K(M,n)].(2.6)

As K(M,n) is fibrant (and like all objects fibrant), the isomorphism
in theorem 1 in [Quillen, 1967, p.1.3] yields [X,K(M,n)] = π(X,K(M,n))].
This means that a morphism in the homotopy category with codomain
K(M,n), i.e. an element of [X,K(M,n)], can be lifted to an actual mor-
phism X → K(M,n). Thus we can associate to elements of [X,K(M,n)]
morphisms X→ K(M,n).
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X K(M,n)

K(M,n)

∼ α
exists only as

an element of

[X,K(M,n)]

(2.7)

2.3. The Corresponding Chain Complexes to X and K(M,n). If we
take a closer look on the sheaves of chain complexes associated with
Z[X] and K(M,n) via Dold-Kan, we see that they are of the form

NZ[X] = NZ[X]← 0← 0← 0← · · ·(2.8)

and

NZ[K(M,n)] = 0← 0← · · · ← 0←M←M′
← · · ·(2.9)

with M at the n-th position, 0 for i < n and some entries for i > n
that aren’t of interest for us right now. This especially means that
there won’t be any nontrivial morphism from X to K(M,n) for n > 0,
i.e. the dotted arrow in 2.7 really only makes sense in the homotopy
category. We have the projection p discarding all terms with i > n:

0 0 · · · 0 M 0 · · ·

0 0 · · · 0 M M′ · · ·

p

(2.10)

2.4. Switching All to the Category of Chain Complexes of Sheaves
of Abelian Groups. Now we apply the free abelian group functor
and the diagram in 2.7 becomes

Z[X] Z[K(M,n)]

Z[K(M,n)]

∼ a ∈W (Quasi-Iso)
exists only as an

element of the

homotopy cat.

.(2.11)

By the means of Dold-Kan correspondence, we regard that diagram
as one in the category of chain complexes. While the chain complex



13

structure ofZ[K(M,n)] is complicated (and won’t be important for us)
and the one of Z[K(M,n)] is as described above, Z[X] is, as a result
of the trivial simplicial structure of X, concentrated at degree 0, i.e.
the complex is

NZ[X] = Z[X]← 0← 0← 0← · · ·(2.12)

With the map p we get

NZ[X] NZ[K(M,n)]∗

NZ[K(M,n)] (· · · ← 0←M← 0← · · · )

∼ a
p

.(2.13)

2.5. Getting Maps into an Injective Resolution of M. Now we form
the pushout on the right hand side which gives us a complex E∗ that
is unique up to unique isomorphy:

NZ[X] NZ[K(M,n)] E∗

NZ[K(M,n)] (· · · ← 0←M← 0← · · · )

∼ a
p

∼ a′

.(2.14)

Note that in 2.14, the pushout map from M[n] into E∗ is a weak
equivalence since the model structure guarantees that for pushouts
of weak equivalences, as well as an injection because of lemma 2.

For what follows, we switch from left bounded chain complexes to
unbounded ones, i.e. we use the forgetful embedding ShChAb+(C) ↪→
ShChAb(C).

Now let

I∗ = In+1 ← In ← In−1 ← · · · ← I1 ← I0 ← 0← · · ·(2.15)

where the Ii form an injective resolution of M. As all entries are in-
jective, I∗ is an injective object in the category of chain complexes. The
map from M into I0 gives us the following chain complex injection:
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· · · In+1 In In−1 · · · I1 I0 0 · · ·

· · · 0 0 0 · · · 0 M 0 · · ·

(2.16)

From the injectivity of I∗ we obtain the dashed arrow

NZ[X] NZ[K(M,n)] E∗

NZ[K(M,n)] (· · · ← 0←M← 0← · · · )

I∗a∼

p

∼ a′
∃unique up to ho-

motopy

.

(2.17)

As a′ is also a weak equivalence, from homological algebra we get
that the induced map is unique up to homotopy.

2.6. Turning this Map into an Actual Element of Hn(X,M). Now
the composition of the upper arrows in 2.14 gives a chain complex
map from Z[X] to I∗ that, written out as a chain complex map is

· · · In+1 In In−1 · · · I1 I0 0 · · ·
∂n+1 ∂n ∂1

· · · 0 Z[X] 0 · · · 0 0 0 · · ·

f

.

(2.18)

That means we have constructed a map f : Z[X] → In that up to
homotopy only depends on the original map X→ K(M,n).

To have that this gives an element of Hn(X,M) = Extn
ShAb(C)(Z[X]; M),

we need to show that f is in the kernel of

∂n+1 ◦ − : HomShAb(C)(Z[X], In)→ HomShAb(C)(Z[X], In+1)(2.19)

and that homotopy only changes f by something in the image of

∂n ◦ − : HomShAb(C)(Z[X], In−1)→ HomShAb(C)(Z[X], In).(2.20)
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The former comes from the fact that 2.18 is a morphism of chain
complexes and the commutativity the square to the left of f reads
∂n+1 ◦ f = 0.

The latter is due to the observation that homotopy transfers to
homotopy of chain complexes in 2.18; if f and g are homotopic maps,
we get the diagram

· · · In+1 In In−1 · · · I1 I0 0 · · ·
∂n+1 ∂n ∂1

· · · 0 Z[X]2 Z[X] · · · 0 0 0 · · ·

f − g

.

(2.21)

Hence f − g is in the image of ∂n◦.
Thus we have defined a well defined assignment φ of elements

of [X,K(M,n)]. A closer look at the construction and applying it
appropriately to maps shows that φ is in fact natural in both X and
M.

3. The Theorem [X,K(M,n)] � Hn(X,M)

Let X be a sheaf of sets and M be a sheaf of abelian groups on the
small site C.

Theorem 1. For n ≥ 0, the map φ : [X,K(M,n)] → Hn(X,M) that was
constructed in the previous section, is an isomorphism.

4. The Proof

We will use an induction argument and start with the case n = 0:

Lemma 3. The theorem holds in the case n = 0.

Proof. For n = 0, the Eilenberg-MacLane object K(M,n) is just the
simplicial sheaf with locally M as the set of 0-vertices and no higher
vertices, i.e. it is a set of descrete points. Hence it is fibrant and
we can simply take K(M,n) := K(M,n) in 2.5. Thus, the pushout a′ of
a = IdK(M,n) in 2.14 along p is again the identity IdM[n]. Hence in this
case n = 0; the map φ is simply postcomposition with the injective
embedding ∂0 : M→ I0 or in other words the maps f : Z[X]→ I0 that
we get out of diagram 2.17 are all maps from Z[X] to I0 that factor
through ∂0 : M → I0. On the other hand, the elements of H0(X,M)
are all elements of the kernel of D1 in
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0→ HomShAb(C)(Z[X], I0)
D1
−→ HomShAb(C)(Z[X], I1)→ HomShAb(C)(Z[X], I2)→ · · · .

(4.1)

But D1 is just the postcomposition with the map ∂1 in

0→M
∂0
−→ I0

∂1
−→ I1 → I2 → · · ·(4.2)

That together means for maps from Z[X] to I0 that

f ∈ H0(X,M)⇔ ∂1 ◦ f = 0(4.3)

As sequence 4.2 is exact, ∂0 is the kernel (in the category theoretical
sense) of ∂1, i.e. ∂1 ◦ f = 0 implies that f factors through ∂0. Thus we
have shown that each element of H0(X,M) can be obtained via φ, i.e.
φ is surjective.

The injectivity in this case easily follows from the fact that if two
maps X → M are mapped to the same element of H0(X,M) by post-
composition with ∂0, they must be equal because ∂0 is injective.

�

Now we consider the situation of having a short exact sequence

0→M1 →M2 →M3 → 0(4.4)

of sheaves of abelian groups.



17

If we take injective resolutions I∗, J∗ and K∗ for the 3 sheaves of
abelian groups, we get the diagram

0 0 0 0 0

0 M1 M2 M3 0

0 I1 J1 K1 0

0 I2 J2 K2 0

...
...

...
...

...(4.5)

which is commutative with exact lines and columns where the hori-
zontal maps are consecutively obtained by using the universal prop-
erty of the injective objects. We then calculate the homology groups
for X in our 3 sheaves and making use of the snake lemma multiple
times on the resulting grid diagram, we get a long exact sequence in
homology

· · · → Hn−1(X,M3)→ Hn(X,M1)→ Hn(X,M2)→ Hn(X,M3)→ Hn+1(X,M1)→ · · ·
(4.6)

with zeroes for n < 0.
The short exact sequence 4.4 makes that the Eilenberg-MacLane

spaces of the Mi form a fibre sequence

K(M1,n)→ K(M2,n)→ K(M3,n)(4.7)

for every n. This again extends (after Q, 3.5) to an exact sequence

· · · → Ω(K(M2,n))→ Ω(K(M3,n))→ K(M1,n)→ K(M2,n)→ K(M3,n)
(4.8)
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where any three consecutive terms form a fibre sequence. We use
the fact that the construction of loop spaces produces for Eilenberg-
MacLane objects the identity

Ω(K(M,n)) = K(M,n − 1)(4.9)

and the arrows are the same as in the fibre sequence of degree n − 1.
Thus, with everywhere chosing n big enough, we get a long exact
sequence

· · · → K(M3,n − 1)→ K(M1,n)→ K(M2,n)→ K(M3,n)→ K(M1,n + 1)→ · · ·
(4.10)

which is a fibre sequence at every term. Applying lemma 1 gives us
the long exact sequence

· · · → [X,K(M3,n − 1)]→ [X,K(M1,n)]→ [X,K(M2,n)]→ [X,K(M3,n)]→ · · · .
(4.11)

With the map φ from above, we get the following diagram:

· · ·

· · ·

Hn−1(X,M3) Hn(X,M1) Hn(X,M2) Hn(X,M3) · · ·

[X,K(M3,n − 1)] [X,K(M1,n)] [X,K(M2,n)] [X,K(M3,n)] · · ·

φ φ φ φ

(4.12)

Lemma 4. This diagram 4.12 is commutative.

Proof. This can be calculated by explicitly using injective resolutions
and getting maps between them in a similar manner as for diagram
4.5 and checking that the construction of φ is compatible with both
horizontal maps using the degree of freedom that the construction
steps that are only up to homotopy give. �

With the goal of using injective objects to show the theorem with
natural induction, we show the following lemmas.

Lemma 5. If I is injective, then K(I,n) is fibrant.
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Proof. By definition of what being fibrant means, we simply have to
show that for every diagram

A

B

K(I,n)

∼

i

f

∗(4.13)

with A and B arbitrary simplicial sheaves and i a trivial cofibration,
a lifting k such that

A

B

K(I,n)

∼
i

f

∗∗

k

(4.14)

commutes does exist.
But via Dold-Kan correspondence and construction of K(I,n) as

just corresponding to I[n] = (· · · ← 0← I ← 0← · · · ), this translates
to the diagram

NZ[A]

NZ[B]

I[n]

∼

i.

f .

0

k.

(4.15)

where the preservation of the model structure under Dold-Kan en-
sures that i. is a cofibration, i.e. a monomorphism in the model
category of chain complexes of sheaves of abelian groups, that is a
mono in every degree.

As I[n] is trivial in any degree different from n, so is f . and can be k..
Hence, as the cokernel of i. is acyclic, we can approach the problem
pointwise and all we need is a lift kn in
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NZ[A]n

NZ[B]n

I

in

fn

0

kn

.(4.16)

This is exactly what the injectivity of I gives us by definition.
Hence we have constructed a lifting k. of the chain complex maps

which again gives us the desired map k. �

Lemma 6. If I is injective and n > 0, then [X,K(I,n)] = 0

Proof. From lemma 5 we know that K(I,n) is fibrant.
That means that every morphism F ∈ [X,K(M,n)] in the homotopy

category can be lifted to a morphism f : X → K(M,n) in the actual
sheaf category (chooseK(M,n) = K(M,n) in 2.5).

But as stated after regarding K(M,n) as a chain complex in 2.9,
there are no nontrivial morphisms between X, whose complex is
concentrated in degree 0, and K(M,n) with a zero at degree 0 < n.

�

Lemma 7. If I is injective and n > 0, then Hn(X, I) = 0

Proof. Calculating Hn(X, I) = Extn
ShAb(C)(Z[X], I) can be done with any

injective resolution of I. We choose the resolution

0→ I Id
−→ I Id
−→ I Id
−→ I Id
−→ · · · .(4.17)

Of course, the functor Hom(Z[X],−) preserves the identity isomor-
phisms, giving the complex

0→ Hom(Z[X], I) Id
−→ Hom(Z[X], I) Id

−→ Hom(Z[X], I) Id
−→ Hom(Z[X], I) Id

−→ · · · .

(4.18)

with trivial homology for n > 0. �

As there are enough injectives, we can embed the sheaf of abelian
groups M from the theorem into an injective object I. With the cok-
ernel N of this embedding, we have the short exact sequence

0→M ↪→ I� N→ 0.(4.19)
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Replacing in 4.4 M1 with M, M2 with I and M3 with N, the commuta-
tive diagram 4.12 reads

· · ·

· · ·

Hn−1(X,N)Hn−1(X, I) Hn(X,M) Hn(X, I) · · ·

[X,K(N,n − 1)][X,K(I,n − 1)] [X,K(M,n)] [X,K(I,n)] · · ·

φ φ φ φ

(4.20)

Now we use induction for n:
As shown above, the theorem holds for n = 0.

Lemma 8. The theorem holds in the case n = 1.

Proof. The first 5 terms in 4.20 read

0

0

H0(X, I)H0(X,M) H0(X,N) H1(X,M) H1(X, I)

[X,K(I, 0)][X,K(M, 0)] [X,K(N, 0)] [X,K(M, 1)] [X,K(I, 1)]

φ φ φ φ φ

(4.21)

From lemmas 6 and 7 we get that [X,K(I, 1)] and H1(X, I) are zero.
We also know from lemma 3 that the three vertical maps in degree

n = 0 are isomorphisms.
Thus diagram 4.21 becomes

0

0

H0(X, I)H0(X,M) H0(X,N) H1(X,M) 0

[X,K(I, 0)][X,K(M, 0)] [X,K(N, 0)] [X,K(M, 1)] 0

φ� φ� φ� φ φ

(4.22)

and regarding the lines’ exactness, an easy form of diagram chase or
using the five-lemma forces φ : [X,K(M, 1)]→ H1(X,M) to also be an
isomorphism. �

Thus for n > 1 we can assume that φ is an isomorphism for n − 1
and the theorem is reduced to the following last lemma:
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Lemma 9. If n > 1 and the theorem’s conclusion holds for n − 1, then it
also holds for n.

Proof. We apply the assumption that the result is true for n − 1 to the
group sheaf N, obtaining that

Hn−1(X,N)

[X,K(N,n − 1)]

φ

(4.23)

is an isomorphism.
As n > 1, from Lemmas 6 and 7 we have that the terms with I are

zero, i.e. the part of diagram 4.20 becomes

· · ·

· · ·

Hn−1(X,N) Hn(X,M) 0

[X,K(N,n − 1)] [X,K(M,n)] 0

0

0

� φ= =

.

(4.24)

The exactness of the long exact sequences implies that the horizontal
arrows are also isomorphisms. Hence in the commutative diagram

Hn−1(X,N) Hn(X,M)

[X,K(N,n − 1)] [X,K(M,n)]

�

�

� φ

(4.25)

the map φ must also be an isomorphism. �
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